Blender
V3.3
|
Go to the source code of this file.
Macros | |
#define | VEC_ZERO_2(a) |
Zero out a 2D vector. More... | |
#define | VEC_ZERO(a) |
Zero out a 3D vector. More... | |
#define | VEC_ZERO_4(a) |
Zero out a 4D vector. More... | |
#define | VEC_COPY_2(b, a) |
Vector copy. More... | |
#define | VEC_COPY(b, a) |
Copy 3D vector. More... | |
#define | VEC_COPY_4(b, a) |
Copy 4D vector. More... | |
#define | VEC_SWAP(b, a) |
VECTOR SWAP. More... | |
#define | VEC_DIFF_2(v21, v2, v1) |
Vector difference. More... | |
#define | VEC_DIFF(v21, v2, v1) |
Vector difference. More... | |
#define | VEC_DIFF_4(v21, v2, v1) |
Vector difference. More... | |
#define | VEC_SUM_2(v21, v2, v1) |
Vector sum. More... | |
#define | VEC_SUM(v21, v2, v1) |
Vector sum. More... | |
#define | VEC_SUM_4(v21, v2, v1) |
Vector sum. More... | |
#define | VEC_SCALE_2(c, a, b) |
scalar times vector More... | |
#define | VEC_SCALE(c, a, b) |
scalar times vector More... | |
#define | VEC_SCALE_4(c, a, b) |
scalar times vector More... | |
#define | VEC_ACCUM_2(c, a, b) |
accumulate scaled vector More... | |
#define | VEC_ACCUM(c, a, b) |
accumulate scaled vector More... | |
#define | VEC_ACCUM_4(c, a, b) |
accumulate scaled vector More... | |
#define | VEC_DOT_2(a, b) ((a)[0] * (b)[0] + (a)[1] * (b)[1]) |
Vector dot product. More... | |
#define | VEC_DOT(a, b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2]) |
Vector dot product. More... | |
#define | VEC_DOT_4(a, b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2] + (a)[3] * (b)[3]) |
Vector dot product. More... | |
#define | VEC_IMPACT_SQ(bsq, direction, position) |
vector impact parameter (squared) More... | |
#define | VEC_IMPACT(bsq, direction, position) |
vector impact parameter More... | |
#define | VEC_LENGTH_2(a, l) |
Vector length. More... | |
#define | VEC_LENGTH(a, l) |
Vector length. More... | |
#define | VEC_LENGTH_4(a, l) |
Vector length. More... | |
#define | VEC_INV_LENGTH_2(a, l) |
Vector inv length. More... | |
#define | VEC_INV_LENGTH(a, l) |
Vector inv length. More... | |
#define | VEC_INV_LENGTH_4(a, l) |
Vector inv length. More... | |
#define | VEC_DISTANCE(_len, _va, _vb) |
distance between two points More... | |
#define | VEC_CONJUGATE_LENGTH(a, l) |
Vector length. More... | |
#define | VEC_NORMALIZE(a) |
Vector length. More... | |
#define | VEC_RENORMALIZE(a, newlen) |
Set Vector size. More... | |
#define | VEC_CROSS(c, a, b) |
Vector cross. More... | |
#define | VEC_PERPENDICULAR(vp, v, n) |
#define | VEC_PARALLEL(vp, v, n) |
#define | VEC_PROJECT(vp, v, n) |
#define | VEC_UNPROJECT(vp, v, n) |
#define | VEC_REFLECT(vr, v, n) |
#define | VEC_BLEND_AB(vr, sa, a, sb, b) |
#define | VEC_BLEND(vr, a, b, s) VEC_BLEND_AB(vr, (1 - s), a, s, b) |
#define | VEC_SET3(a, b, op, c) |
#define | VEC_MAYOR_COORD(vec, maxc) |
Finds the bigger cartesian coordinate from a vector. More... | |
#define | VEC_MINOR_AXES(vec, i0, i1) |
Finds the 2 smallest cartesian coordinates from a vector. More... | |
#define | VEC_EQUAL(v1, v2) (v1[0] == v2[0] && v1[1] == v2[1] && v1[2] == v2[2]) |
#define | VEC_NEAR_EQUAL(v1, v2) (GIM_NEAR_EQUAL(v1[0], v2[0]) && GIM_NEAR_EQUAL(v1[1], v2[1]) && GIM_NEAR_EQUAL(v1[2], v2[2])) |
#define | X_AXIS_CROSS_VEC(dst, src) |
Vector cross. More... | |
#define | Y_AXIS_CROSS_VEC(dst, src) |
#define | Z_AXIS_CROSS_VEC(dst, src) |
#define | IDENTIFY_MATRIX_3X3(m) |
initialize matrix More... | |
#define | IDENTIFY_MATRIX_4X4(m) |
#define | ZERO_MATRIX_4X4(m) |
#define | ROTX_CS(m, cosine, sine) |
#define | ROTY_CS(m, cosine, sine) |
#define | ROTZ_CS(m, cosine, sine) |
#define | COPY_MATRIX_2X2(b, a) |
#define | COPY_MATRIX_2X3(b, a) |
#define | COPY_MATRIX_3X3(b, a) |
#define | COPY_MATRIX_4X4(b, a) |
#define | TRANSPOSE_MATRIX_2X2(b, a) |
#define | TRANSPOSE_MATRIX_3X3(b, a) |
#define | TRANSPOSE_MATRIX_4X4(b, a) |
#define | SCALE_MATRIX_2X2(b, s, a) |
#define | SCALE_MATRIX_3X3(b, s, a) |
#define | SCALE_MATRIX_4X4(b, s, a) |
#define | SCALE_VEC_MATRIX_2X2(b, svec, a) |
#define | SCALE_VEC_MATRIX_3X3(b, svec, a) |
#define | SCALE_VEC_MATRIX_4X4(b, svec, a) |
#define | ACCUM_SCALE_MATRIX_2X2(b, s, a) |
#define | ACCUM_SCALE_MATRIX_3X3(b, s, a) |
#define | ACCUM_SCALE_MATRIX_4X4(b, s, a) |
#define | MATRIX_PRODUCT_2X2(c, a, b) |
#define | MATRIX_PRODUCT_3X3(c, a, b) |
#define | MATRIX_PRODUCT_4X4(c, a, b) |
#define | MAT_DOT_VEC_2X2(p, m, v) |
#define | MAT_DOT_VEC_3X3(p, m, v) |
#define | MAT_DOT_VEC_4X4(p, m, v) |
#define | MAT_DOT_VEC_3X4(p, m, v) |
#define | VEC_DOT_MAT_3X3(p, v, m) |
#define | MAT_DOT_VEC_2X3(p, m, v) |
#define | MAT_TRANSFORM_PLANE_4X4(pout, m, plane) |
Transform a plane. More... | |
#define | INV_TRANSP_MAT_DOT_VEC_2X2(p, m, v) |
#define | NORM_XFORM_2X2(p, m, v) |
#define | OUTER_PRODUCT_2X2(m, v, t) |
#define | OUTER_PRODUCT_3X3(m, v, t) |
#define | OUTER_PRODUCT_4X4(m, v, t) |
#define | ACCUM_OUTER_PRODUCT_2X2(m, v, t) |
#define | ACCUM_OUTER_PRODUCT_3X3(m, v, t) |
#define | ACCUM_OUTER_PRODUCT_4X4(m, v, t) |
#define | DETERMINANT_2X2(d, m) |
#define | DETERMINANT_3X3(d, m) |
#define | COFACTOR_4X4_IJ(fac, m, i, j) |
#define | DETERMINANT_4X4(d, m) |
#define | COFACTOR_2X2(a, m) |
#define | COFACTOR_3X3(a, m) |
#define | COFACTOR_4X4(a, m) |
#define | ADJOINT_2X2(a, m) |
#define | ADJOINT_3X3(a, m) |
#define | ADJOINT_4X4(a, m) |
#define | SCALE_ADJOINT_2X2(a, s, m) |
#define | SCALE_ADJOINT_3X3(a, s, m) |
#define | SCALE_ADJOINT_4X4(a, s, m) |
#define | INVERT_2X2(b, det, a) |
#define | INVERT_3X3(b, det, a) |
#define | INVERT_4X4(b, det, a) |
#define | MAT_GET_ROW(mat, vec3, rowindex) |
Get the triple(3) row of a transform matrix. More... | |
#define | MAT_GET_ROW2(mat, vec2, rowindex) |
Get the tuple(2) row of a transform matrix. More... | |
#define | MAT_GET_ROW4(mat, vec4, rowindex) |
Get the quad (4) row of a transform matrix. More... | |
#define | MAT_GET_COL(mat, vec3, colindex) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_GET_COL2(mat, vec2, colindex) |
Get the tuple(2) col of a transform matrix. More... | |
#define | MAT_GET_COL4(mat, vec4, colindex) |
Get the quad (4) col of a transform matrix. More... | |
#define | MAT_GET_X(mat, vec3) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_GET_Y(mat, vec3) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_GET_Z(mat, vec3) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_SET_X(mat, vec3) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_SET_Y(mat, vec3) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_SET_Z(mat, vec3) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_GET_TRANSLATION(mat, vec3) |
Get the triple(3) col of a transform matrix. More... | |
#define | MAT_SET_TRANSLATION(mat, vec3) |
Set the triple(3) col of a transform matrix. More... | |
#define | MAT_DOT_ROW(mat, vec3, rowindex) (vec3[0] * mat[rowindex][0] + vec3[1] * mat[rowindex][1] + vec3[2] * mat[rowindex][2]) |
Returns the dot product between a vec3f and the row of a matrix. More... | |
#define | MAT_DOT_ROW2(mat, vec2, rowindex) (vec2[0] * mat[rowindex][0] + vec2[1] * mat[rowindex][1]) |
Returns the dot product between a vec2f and the row of a matrix. More... | |
#define | MAT_DOT_ROW4(mat, vec4, rowindex) (vec4[0] * mat[rowindex][0] + vec4[1] * mat[rowindex][1] + vec4[2] * mat[rowindex][2] + vec4[3] * mat[rowindex][3]) |
Returns the dot product between a vec4f and the row of a matrix. More... | |
#define | MAT_DOT_COL(mat, vec3, colindex) (vec3[0] * mat[0][colindex] + vec3[1] * mat[1][colindex] + vec3[2] * mat[2][colindex]) |
Returns the dot product between a vec3f and the col of a matrix. More... | |
#define | MAT_DOT_COL2(mat, vec2, colindex) (vec2[0] * mat[0][colindex] + vec2[1] * mat[1][colindex]) |
Returns the dot product between a vec2f and the col of a matrix. More... | |
#define | MAT_DOT_COL4(mat, vec4, colindex) (vec4[0] * mat[0][colindex] + vec4[1] * mat[1][colindex] + vec4[2] * mat[2][colindex] + vec4[3] * mat[3][colindex]) |
Returns the dot product between a vec4f and the col of a matrix. More... | |
#define | INV_MAT_DOT_VEC_3X3(p, m, v) |
Definition in file gim_linear_math.h.
outer product of vector times vector transpose
The outer product of vector v and vector transpose t yeilds dyadic matrix m.
Definition at line 1053 of file gim_linear_math.h.
outer product of vector times vector transpose
The outer product of vector v and vector transpose t yeilds dyadic matrix m.
Definition at line 1067 of file gim_linear_math.h.
outer product of vector times vector transpose
The outer product of vector v and vector transpose t yeilds dyadic matrix m.
Definition at line 1087 of file gim_linear_math.h.
#define ACCUM_SCALE_MATRIX_2X2 | ( | b, | |
s, | |||
a | |||
) |
#define ACCUM_SCALE_MATRIX_3X3 | ( | b, | |
s, | |||
a | |||
) |
multiply matrix by scalar
Definition at line 775 of file gim_linear_math.h.
#define ACCUM_SCALE_MATRIX_4X4 | ( | b, | |
s, | |||
a | |||
) |
multiply matrix by scalar
Definition at line 791 of file gim_linear_math.h.
#define ADJOINT_2X2 | ( | a, | |
m | |||
) |
adjoint of matrix
Computes adjoint of matrix m, returning a (Note that adjoint is just the transpose of the cofactor matrix)
Definition at line 1221 of file gim_linear_math.h.
#define ADJOINT_3X3 | ( | a, | |
m | |||
) |
adjoint of matrix
Computes adjoint of matrix m, returning a (Note that adjoint is just the transpose of the cofactor matrix)
Definition at line 1234 of file gim_linear_math.h.
#define ADJOINT_4X4 | ( | a, | |
m | |||
) |
adjoint of matrix
Computes adjoint of matrix m, returning a (Note that adjoint is just the transpose of the cofactor matrix)
Definition at line 1252 of file gim_linear_math.h.
#define COFACTOR_2X2 | ( | a, | |
m | |||
) |
cofactor of matrix
Computes cofactor of matrix m, returning a
Definition at line 1174 of file gim_linear_math.h.
#define COFACTOR_3X3 | ( | a, | |
m | |||
) |
cofactor of matrix
Computes cofactor of matrix m, returning a
Definition at line 1186 of file gim_linear_math.h.
#define COFACTOR_4X4 | ( | a, | |
m | |||
) |
cofactor of matrix
Computes cofactor of matrix m, returning a
Definition at line 1203 of file gim_linear_math.h.
#define COFACTOR_4X4_IJ | ( | fac, | |
m, | |||
i, | |||
j | |||
) |
i,j,th cofactor of a 4x4 matrix
Definition at line 1133 of file gim_linear_math.h.
#define COPY_MATRIX_2X2 | ( | b, | |
a | |||
) |
#define COPY_MATRIX_2X3 | ( | b, | |
a | |||
) |
#define COPY_MATRIX_3X3 | ( | b, | |
a | |||
) |
#define COPY_MATRIX_4X4 | ( | b, | |
a | |||
) |
matrix copy
Definition at line 591 of file gim_linear_math.h.
#define DETERMINANT_2X2 | ( | d, | |
m | |||
) |
determinant of matrix
Computes determinant of matrix m, returning d
Definition at line 1114 of file gim_linear_math.h.
#define DETERMINANT_3X3 | ( | d, | |
m | |||
) |
determinant of matrix
Computes determinant of matrix m, returning d
Definition at line 1123 of file gim_linear_math.h.
#define DETERMINANT_4X4 | ( | d, | |
m | |||
) |
determinant of matrix
Computes determinant of matrix m, returning d
Definition at line 1157 of file gim_linear_math.h.
#define IDENTIFY_MATRIX_3X3 | ( | m | ) |
initialize matrix
Definition at line 411 of file gim_linear_math.h.
#define IDENTIFY_MATRIX_4X4 | ( | m | ) |
initialize matrix
Definition at line 427 of file gim_linear_math.h.
Transpose matrix times vector v is a vec3f and m is a mat4f
Definition at line 1480 of file gim_linear_math.h.
inverse transpose of matrix times vector
This macro computes inverse transpose of matrix m, and multiplies vector v into it, to yeild vector p
DANGER !!! Do Not use this on normal vectors!!! It will leave normals the wrong length !!! See macro below for use on normals.
Definition at line 941 of file gim_linear_math.h.
#define INVERT_2X2 | ( | b, | |
det, | |||
a | |||
) |
inverse of matrix
Compute inverse of matrix a, returning determinant m and inverse b
Definition at line 1318 of file gim_linear_math.h.
#define INVERT_3X3 | ( | b, | |
det, | |||
a | |||
) |
inverse of matrix
Compute inverse of matrix a, returning determinant m and inverse b
Definition at line 1331 of file gim_linear_math.h.
#define INVERT_4X4 | ( | b, | |
det, | |||
a | |||
) |
inverse of matrix
Compute inverse of matrix a, returning determinant m and inverse b
Definition at line 1344 of file gim_linear_math.h.
#define MAT_DOT_COL | ( | mat, | |
vec3, | |||
colindex | |||
) | (vec3[0] * mat[0][colindex] + vec3[1] * mat[1][colindex] + vec3[2] * mat[2][colindex]) |
Returns the dot product between a vec3f and the col of a matrix.
Definition at line 1468 of file gim_linear_math.h.
#define MAT_DOT_COL2 | ( | mat, | |
vec2, | |||
colindex | |||
) | (vec2[0] * mat[0][colindex] + vec2[1] * mat[1][colindex]) |
Returns the dot product between a vec2f and the col of a matrix.
Definition at line 1471 of file gim_linear_math.h.
#define MAT_DOT_COL4 | ( | mat, | |
vec4, | |||
colindex | |||
) | (vec4[0] * mat[0][colindex] + vec4[1] * mat[1][colindex] + vec4[2] * mat[2][colindex] + vec4[3] * mat[3][colindex]) |
Returns the dot product between a vec4f and the col of a matrix.
Definition at line 1474 of file gim_linear_math.h.
#define MAT_DOT_ROW | ( | mat, | |
vec3, | |||
rowindex | |||
) | (vec3[0] * mat[rowindex][0] + vec3[1] * mat[rowindex][1] + vec3[2] * mat[rowindex][2]) |
Returns the dot product between a vec3f and the row of a matrix.
Definition at line 1459 of file gim_linear_math.h.
#define MAT_DOT_ROW2 | ( | mat, | |
vec2, | |||
rowindex | |||
) | (vec2[0] * mat[rowindex][0] + vec2[1] * mat[rowindex][1]) |
Returns the dot product between a vec2f and the row of a matrix.
Definition at line 1462 of file gim_linear_math.h.
#define MAT_DOT_ROW4 | ( | mat, | |
vec4, | |||
rowindex | |||
) | (vec4[0] * mat[rowindex][0] + vec4[1] * mat[rowindex][1] + vec4[2] * mat[rowindex][2] + vec4[3] * mat[rowindex][3]) |
Returns the dot product between a vec4f and the row of a matrix.
Definition at line 1465 of file gim_linear_math.h.
matrix times vector v is a vec3f and m is a mat4f
Last column is added as the position
Definition at line 898 of file gim_linear_math.h.
#define MAT_GET_COL | ( | mat, | |
vec3, | |||
colindex | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1377 of file gim_linear_math.h.
#define MAT_GET_COL2 | ( | mat, | |
vec2, | |||
colindex | |||
) |
Get the tuple(2) col of a transform matrix.
Definition at line 1385 of file gim_linear_math.h.
Get the quad (4) col of a transform matrix.
Definition at line 1392 of file gim_linear_math.h.
#define MAT_GET_ROW | ( | mat, | |
vec3, | |||
rowindex | |||
) |
Get the triple(3) row of a transform matrix.
Definition at line 1353 of file gim_linear_math.h.
#define MAT_GET_ROW2 | ( | mat, | |
vec2, | |||
rowindex | |||
) |
Get the tuple(2) row of a transform matrix.
Definition at line 1361 of file gim_linear_math.h.
Get the quad (4) row of a transform matrix.
Definition at line 1368 of file gim_linear_math.h.
#define MAT_GET_TRANSLATION | ( | mat, | |
vec3 | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1443 of file gim_linear_math.h.
#define MAT_GET_X | ( | mat, | |
vec3 | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1401 of file gim_linear_math.h.
#define MAT_GET_Y | ( | mat, | |
vec3 | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1407 of file gim_linear_math.h.
#define MAT_GET_Z | ( | mat, | |
vec3 | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1413 of file gim_linear_math.h.
#define MAT_SET_TRANSLATION | ( | mat, | |
vec3 | |||
) |
Set the triple(3) col of a transform matrix.
Definition at line 1451 of file gim_linear_math.h.
#define MAT_SET_X | ( | mat, | |
vec3 | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1419 of file gim_linear_math.h.
#define MAT_SET_Y | ( | mat, | |
vec3 | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1427 of file gim_linear_math.h.
#define MAT_SET_Z | ( | mat, | |
vec3 | |||
) |
Get the triple(3) col of a transform matrix.
Definition at line 1435 of file gim_linear_math.h.
#define MAT_TRANSFORM_PLANE_4X4 | ( | pout, | |
m, | |||
plane | |||
) |
Transform a plane.
Definition at line 924 of file gim_linear_math.h.
#define MATRIX_PRODUCT_2X2 | ( | c, | |
a, | |||
b | |||
) |
matrix product
c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];
Definition at line 816 of file gim_linear_math.h.
#define MATRIX_PRODUCT_3X3 | ( | c, | |
a, | |||
b | |||
) |
matrix product
c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];
Definition at line 827 of file gim_linear_math.h.
#define MATRIX_PRODUCT_4X4 | ( | c, | |
a, | |||
b | |||
) |
matrix product
c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];
Definition at line 844 of file gim_linear_math.h.
transform normal vector by inverse transpose of matrix and then renormalize the vector
This macro computes inverse transpose of matrix m, and multiplies vector v into it, to yeild vector p Vector p is then normalized.
Definition at line 965 of file gim_linear_math.h.
outer product of vector times vector transpose
The outer product of vector v and vector transpose t yeilds dyadic matrix m.
Definition at line 1005 of file gim_linear_math.h.
outer product of vector times vector transpose
The outer product of vector v and vector transpose t yeilds dyadic matrix m.
Definition at line 1025 of file gim_linear_math.h.
#define ROTX_CS | ( | m, | |
cosine, | |||
sine | |||
) |
matrix rotation X
Definition at line 475 of file gim_linear_math.h.
#define ROTY_CS | ( | m, | |
cosine, | |||
sine | |||
) |
matrix rotation Y
Definition at line 501 of file gim_linear_math.h.
#define ROTZ_CS | ( | m, | |
cosine, | |||
sine | |||
) |
matrix rotation Z
Definition at line 527 of file gim_linear_math.h.
#define SCALE_ADJOINT_2X2 | ( | a, | |
s, | |||
m | |||
) |
compute adjoint of matrix and scale
Computes adjoint of matrix m, scales it by s, returning a
Definition at line 1269 of file gim_linear_math.h.
#define SCALE_ADJOINT_3X3 | ( | a, | |
s, | |||
m | |||
) |
compute adjoint of matrix and scale
Computes adjoint of matrix m, scales it by s, returning a
Definition at line 1281 of file gim_linear_math.h.
#define SCALE_ADJOINT_4X4 | ( | a, | |
s, | |||
m | |||
) |
compute adjoint of matrix and scale
Computes adjoint of matrix m, scales it by s, returning a
Definition at line 1300 of file gim_linear_math.h.
#define SCALE_MATRIX_2X2 | ( | b, | |
s, | |||
a | |||
) |
#define SCALE_MATRIX_3X3 | ( | b, | |
s, | |||
a | |||
) |
multiply matrix by scalar
Definition at line 675 of file gim_linear_math.h.
#define SCALE_MATRIX_4X4 | ( | b, | |
s, | |||
a | |||
) |
multiply matrix by scalar
Definition at line 691 of file gim_linear_math.h.
#define SCALE_VEC_MATRIX_2X2 | ( | b, | |
svec, | |||
a | |||
) |
#define SCALE_VEC_MATRIX_3X3 | ( | b, | |
svec, | |||
a | |||
) |
multiply matrix by scalar. Each columns is scaled by each scalar vector component
Definition at line 725 of file gim_linear_math.h.
#define SCALE_VEC_MATRIX_4X4 | ( | b, | |
svec, | |||
a | |||
) |
multiply matrix by scalar
Definition at line 741 of file gim_linear_math.h.
#define TRANSPOSE_MATRIX_2X2 | ( | b, | |
a | |||
) |
#define TRANSPOSE_MATRIX_3X3 | ( | b, | |
a | |||
) |
#define TRANSPOSE_MATRIX_4X4 | ( | b, | |
a | |||
) |
matrix transpose
Definition at line 641 of file gim_linear_math.h.
#define VEC_ACCUM | ( | c, | |
a, | |||
b | |||
) |
#define VEC_ACCUM_2 | ( | c, | |
a, | |||
b | |||
) |
#define VEC_ACCUM_4 | ( | c, | |
a, | |||
b | |||
) |
#define VEC_BLEND | ( | vr, | |
a, | |||
b, | |||
s | |||
) | VEC_BLEND_AB(vr, (1 - s), a, s, b) |
Vector blending Takes two vectors a, b, blends them together with s <=1
Definition at line 362 of file gim_linear_math.h.
#define VEC_BLEND_AB | ( | vr, | |
sa, | |||
a, | |||
sb, | |||
b | |||
) |
#define VEC_COPY | ( | b, | |
a | |||
) |
#define VEC_COPY_2 | ( | b, | |
a | |||
) |
#define VEC_COPY_4 | ( | b, | |
a | |||
) |
#define VEC_CROSS | ( | c, | |
a, | |||
b | |||
) |
Vector difference.
Definition at line 98 of file gim_linear_math.h.
#define VEC_DISTANCE | ( | _len, | |
_va, | |||
_vb | |||
) |
distance between two points
Definition at line 252 of file gim_linear_math.h.
#define VEC_DOT | ( | a, | |
b | |||
) | ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2]) |
Vector dot product.
Definition at line 190 of file gim_linear_math.h.
#define VEC_DOT_2 | ( | a, | |
b | |||
) | ((a)[0] * (b)[0] + (a)[1] * (b)[1]) |
Vector dot product.
Definition at line 187 of file gim_linear_math.h.
#define VEC_DOT_4 | ( | a, | |
b | |||
) | ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2] + (a)[3] * (b)[3]) |
Vector dot product.
Definition at line 193 of file gim_linear_math.h.
vector transpose times matrix
p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j];
Definition at line 907 of file gim_linear_math.h.
Definition at line 384 of file gim_linear_math.h.
#define VEC_IMPACT | ( | bsq, | |
direction, | |||
position | |||
) |
vector impact parameter
Definition at line 203 of file gim_linear_math.h.
#define VEC_IMPACT_SQ | ( | bsq, | |
direction, | |||
position | |||
) |
vector impact parameter (squared)
Definition at line 196 of file gim_linear_math.h.
Vector inv length.
Definition at line 231 of file gim_linear_math.h.
Vector inv length.
Definition at line 245 of file gim_linear_math.h.
#define VEC_MAYOR_COORD | ( | vec, | |
maxc | |||
) |
Finds the bigger cartesian coordinate from a vector.
Definition at line 370 of file gim_linear_math.h.
Finds the 2 smallest cartesian coordinates from a vector.
Definition at line 377 of file gim_linear_math.h.
#define VEC_NEAR_EQUAL | ( | v1, | |
v2 | |||
) | (GIM_NEAR_EQUAL(v1[0], v2[0]) && GIM_NEAR_EQUAL(v1[1], v2[1]) && GIM_NEAR_EQUAL(v1[2], v2[2])) |
Definition at line 386 of file gim_linear_math.h.
#define VEC_NORMALIZE | ( | a | ) |
Vector length.
Definition at line 267 of file gim_linear_math.h.
Vector parallel – assumes that n is of unit length
Definition at line 312 of file gim_linear_math.h.
Same as Vector parallel – n can have any length accepts vector v, subtracts out any component perpendicular to n
Definition at line 322 of file gim_linear_math.h.
Vector reflection – assumes n is of unit length Takes vector v, reflects it against reflector n, and returns vr
Definition at line 343 of file gim_linear_math.h.
#define VEC_RENORMALIZE | ( | a, | |
newlen | |||
) |
Set Vector size.
Definition at line 280 of file gim_linear_math.h.
#define VEC_SCALE | ( | c, | |
a, | |||
b | |||
) |
#define VEC_SCALE_2 | ( | c, | |
a, | |||
b | |||
) |
#define VEC_SCALE_4 | ( | c, | |
a, | |||
b | |||
) |
#define VEC_SET3 | ( | a, | |
b, | |||
op, | |||
c | |||
) |
#define VEC_SWAP | ( | b, | |
a | |||
) |
accepts vector v
Definition at line 332 of file gim_linear_math.h.
#define VEC_ZERO | ( | a | ) |
Zero out a 3D vector.
Definition at line 47 of file gim_linear_math.h.
#define VEC_ZERO_2 | ( | a | ) |
Zero out a 2D vector.
Definition at line 41 of file gim_linear_math.h.
#define VEC_ZERO_4 | ( | a | ) |
Vector cross.
Definition at line 389 of file gim_linear_math.h.
Definition at line 396 of file gim_linear_math.h.
Definition at line 403 of file gim_linear_math.h.
#define ZERO_MATRIX_4X4 | ( | m | ) |
initialize matrix
Definition at line 451 of file gim_linear_math.h.