Blender  V3.3
btSoftRigidDynamicsWorld.cpp
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
17 #include "LinearMath/btQuickprof.h"
18 
19 //softbody & helpers
20 #include "btSoftBody.h"
21 #include "btSoftBodyHelpers.h"
22 #include "btSoftBodySolvers.h"
25 
27  btDispatcher* dispatcher,
28  btBroadphaseInterface* pairCache,
29  btConstraintSolver* constraintSolver,
30  btCollisionConfiguration* collisionConfiguration,
31  btSoftBodySolver* softBodySolver) : btDiscreteDynamicsWorld(dispatcher, pairCache, constraintSolver, collisionConfiguration),
32  m_softBodySolver(softBodySolver),
33  m_ownsSolver(false)
34 {
35  if (!m_softBodySolver)
36  {
37  void* ptr = btAlignedAlloc(sizeof(btDefaultSoftBodySolver), 16);
38  m_softBodySolver = new (ptr) btDefaultSoftBodySolver();
39  m_ownsSolver = true;
40  }
41 
42  m_drawFlags = fDrawFlags::Std;
43  m_drawNodeTree = true;
44  m_drawFaceTree = false;
45  m_drawClusterTree = false;
46  m_sbi.m_broadphase = pairCache;
47  m_sbi.m_dispatcher = dispatcher;
48  m_sbi.m_sparsesdf.Initialize();
49  m_sbi.m_sparsesdf.Reset();
50 
51  m_sbi.air_density = (btScalar)1.2;
52  m_sbi.water_density = 0;
53  m_sbi.water_offset = 0;
54  m_sbi.water_normal = btVector3(0, 0, 0);
55  m_sbi.m_gravity.setValue(0, -10, 0);
56 
57  m_sbi.m_sparsesdf.Initialize();
58 }
59 
61 {
62  if (m_ownsSolver)
63  {
64  m_softBodySolver->~btSoftBodySolver();
65  btAlignedFree(m_softBodySolver);
66  }
67 }
68 
70 {
72  {
73  BT_PROFILE("predictUnconstraintMotionSoftBody");
74  m_softBodySolver->predictMotion(float(timeStep));
75  }
76 }
77 
79 {
80  // Let the solver grab the soft bodies and if necessary optimize for it
81  m_softBodySolver->optimize(getSoftBodyArray());
82 
83  if (!m_softBodySolver->checkInitialized())
84  {
85  btAssert("Solver initialization failed\n");
86  }
87 
89 
92 
93  //self collisions
94  for (int i = 0; i < m_softBodies.size(); i++)
95  {
96  btSoftBody* psb = (btSoftBody*)m_softBodies[i];
97  psb->defaultCollisionHandler(psb);
98  }
99 
101  m_softBodySolver->updateSoftBodies();
102 
103  // End solver-wise simulation step
104  // ///////////////////////////////
105 }
106 
108 {
109  BT_PROFILE("solveSoftConstraints");
110 
111  if (m_softBodies.size())
112  {
113  btSoftBody::solveClusters(m_softBodies);
114  }
115 
116  // Solve constraints solver-wise
117  m_softBodySolver->solveConstraints(timeStep * m_softBodySolver->getTimeScale());
118 }
119 
120 void btSoftRigidDynamicsWorld::addSoftBody(btSoftBody* body, int collisionFilterGroup, int collisionFilterMask)
121 {
122  m_softBodies.push_back(body);
123 
124  // Set the soft body solver that will deal with this body
125  // to be the world's solver
126  body->setSoftBodySolver(m_softBodySolver);
127 
129  collisionFilterGroup,
130  collisionFilterMask);
131 }
132 
134 {
135  m_softBodies.remove(body);
136 
138 }
139 
141 {
142  btSoftBody* body = btSoftBody::upcast(collisionObject);
143  if (body)
144  removeSoftBody(body);
145  else
147 }
148 
150 {
152 
153  if (getDebugDrawer())
154  {
155  int i;
156  for (i = 0; i < this->m_softBodies.size(); i++)
157  {
158  btSoftBody* psb = (btSoftBody*)this->m_softBodies[i];
159  if (getDebugDrawer() && (getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe)))
160  {
161  btSoftBodyHelpers::DrawFrame(psb, m_debugDrawer);
162  btSoftBodyHelpers::Draw(psb, m_debugDrawer, m_drawFlags);
163  }
164 
165  if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
166  {
167  if (m_drawNodeTree) btSoftBodyHelpers::DrawNodeTree(psb, m_debugDrawer);
168  if (m_drawFaceTree) btSoftBodyHelpers::DrawFaceTree(psb, m_debugDrawer);
169  if (m_drawClusterTree) btSoftBodyHelpers::DrawClusterTree(psb, m_debugDrawer);
170  }
171  }
172  }
173 }
174 
176 {
182 
185 
186  btSoftSingleRayCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld, const btSoftRigidDynamicsWorld* world, btCollisionWorld::RayResultCallback& resultCallback)
187  : m_rayFromWorld(rayFromWorld),
188  m_rayToWorld(rayToWorld),
189  m_world(world),
190  m_resultCallback(resultCallback)
191  {
192  m_rayFromTrans.setIdentity();
193  m_rayFromTrans.setOrigin(m_rayFromWorld);
194  m_rayToTrans.setIdentity();
195  m_rayToTrans.setOrigin(m_rayToWorld);
196 
197  btVector3 rayDir = (rayToWorld - rayFromWorld);
198 
199  rayDir.normalize();
201  m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0];
202  m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1];
203  m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2];
204  m_signs[0] = m_rayDirectionInverse[0] < 0.0;
205  m_signs[1] = m_rayDirectionInverse[1] < 0.0;
206  m_signs[2] = m_rayDirectionInverse[2] < 0.0;
207 
208  m_lambda_max = rayDir.dot(m_rayToWorld - m_rayFromWorld);
209  }
210 
211  virtual bool process(const btBroadphaseProxy* proxy)
212  {
215  return false;
216 
217  btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
218 
219  //only perform raycast if filterMask matches
220  if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
221  {
222  //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
223  //btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
224 #if 0
225 #ifdef RECALCULATE_AABB
226  btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
227  collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
228 #else
229  //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
230  const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
231  const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
232 #endif
233 #endif
234  //btScalar hitLambda = m_resultCallback.m_closestHitFraction;
235  //culling already done by broadphase
236  //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
237  {
239  collisionObject,
240  collisionObject->getCollisionShape(),
241  collisionObject->getWorldTransform(),
243  }
244  }
245  return true;
246  }
247 };
248 
249 void btSoftRigidDynamicsWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
250 {
251  BT_PROFILE("rayTest");
254  btSoftSingleRayCallback rayCB(rayFromWorld, rayToWorld, this, resultCallback);
255 
256 #ifndef USE_BRUTEFORCE_RAYBROADPHASE
257  m_broadphasePairCache->rayTest(rayFromWorld, rayToWorld, rayCB);
258 #else
259  for (int i = 0; i < this->getNumCollisionObjects(); i++)
260  {
261  rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
262  }
263 #endif //USE_BRUTEFORCE_RAYBROADPHASE
264 }
265 
266 void btSoftRigidDynamicsWorld::rayTestSingle(const btTransform& rayFromTrans, const btTransform& rayToTrans,
267  btCollisionObject* collisionObject,
268  const btCollisionShape* collisionShape,
269  const btTransform& colObjWorldTransform,
270  RayResultCallback& resultCallback)
271 {
272  if (collisionShape->isSoftBody())
273  {
274  btSoftBody* softBody = btSoftBody::upcast(collisionObject);
275  if (softBody)
276  {
277  btSoftBody::sRayCast softResult;
278  if (softBody->rayTest(rayFromTrans.getOrigin(), rayToTrans.getOrigin(), softResult))
279  {
280  if (softResult.fraction <= resultCallback.m_closestHitFraction)
281  {
283  shapeInfo.m_shapePart = 0;
284  shapeInfo.m_triangleIndex = softResult.index;
285  // get the normal
286  btVector3 rayDir = rayToTrans.getOrigin() - rayFromTrans.getOrigin();
287  btVector3 normal = -rayDir;
288  normal.normalize();
289 
290  if (softResult.feature == btSoftBody::eFeature::Face)
291  {
292  normal = softBody->m_faces[softResult.index].m_normal;
293  if (normal.dot(rayDir) > 0)
294  {
295  // normal always point toward origin of the ray
296  normal = -normal;
297  }
298  }
299 
300  btCollisionWorld::LocalRayResult rayResult(collisionObject,
301  &shapeInfo,
302  normal,
303  softResult.fraction);
304  bool normalInWorldSpace = true;
305  resultCallback.addSingleResult(rayResult, normalInWorldSpace);
306  }
307  }
308  }
309  }
310  else
311  {
312  btCollisionWorld::rayTestSingle(rayFromTrans, rayToTrans, collisionObject, collisionShape, colObjWorldTransform, resultCallback);
313  }
314 }
315 
317 {
318  int i;
319  //serialize all collision objects
320  for (i = 0; i < m_collisionObjects.size(); i++)
321  {
322  btCollisionObject* colObj = m_collisionObjects[i];
323  if (colObj->getInternalType() & btCollisionObject::CO_SOFT_BODY)
324  {
325  int len = colObj->calculateSerializeBufferSize();
326  btChunk* chunk = serializer->allocate(len, 1);
327  const char* structType = colObj->serialize(chunk->m_oldPtr, serializer);
328  serializer->finalizeChunk(chunk, structType, BT_SOFTBODY_CODE, colObj);
329  }
330  }
331 }
332 
334 {
335  serializer->startSerialization();
336 
337  serializeDynamicsWorldInfo(serializer);
338 
339  serializeSoftBodies(serializer);
340 
341  serializeRigidBodies(serializer);
342 
343  serializeCollisionObjects(serializer);
344 
345  serializer->finishSerialization();
346 }
#define btAlignedFree(ptr)
#define btAlignedAlloc(size, alignment)
btBroadphaseProxy
btCollisionObject
SIMD_FORCE_INLINE btBroadphaseProxy * getBroadphaseHandle()
@ CO_SOFT_BODY
btCollisionShape
The btCollisionShape class provides an interface for collision shapes that can be shared among btColl...
void serializeRigidBodies(btSerializer *serializer)
void serializeDynamicsWorldInfo(btSerializer *serializer)
btDiscreteDynamicsWorld(btDispatcher *dispatcher, btBroadphaseInterface *pairCache, btConstraintSolver *constraintSolver, btCollisionConfiguration *collisionConfiguration)
this btDiscreteDynamicsWorld constructor gets created objects from the user, and will not delete thos...
virtual void debugDrawWorld()
virtual void predictUnconstraintMotion(btScalar timeStep)
virtual void removeCollisionObject(btCollisionObject *collisionObject)
removeCollisionObject will first check if it is a rigid body, if so call removeRigidBody otherwise ca...
virtual void internalSingleStepSimulation(btScalar timeStep)
#define BT_PROFILE(name)
Definition: btQuickprof.h:198
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btAssert(x)
Definition: btScalar.h:295
#define BT_SOFTBODY_CODE
Definition: btSerializer.h:110
btTransform
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:30
btVector3
btVector3 can be used to represent 3D points and vectors. It has an un-used w component to suit 16-by...
Definition: btVector3.h:82
SIMD_FORCE_INLINE int size() const
return the number of elements in the array
void remove(const T &key)
SIMD_FORCE_INLINE void push_back(const T &_Val)
void * m_oldPtr
Definition: btSerializer.h:52
virtual void removeCollisionObject(btCollisionObject *collisionObject)
virtual void addCollisionObject(btCollisionObject *collisionObject, int collisionFilterGroup=btBroadphaseProxy::DefaultFilter, int collisionFilterMask=btBroadphaseProxy::AllFilter)
static void rayTestSingle(const btTransform &rayFromTrans, const btTransform &rayToTrans, btCollisionObject *collisionObject, const btCollisionShape *collisionShape, const btTransform &colObjWorldTransform, RayResultCallback &resultCallback)
virtual btChunk * allocate(size_t size, int numElements)=0
virtual void finishSerialization()=0
virtual void startSerialization()=0
virtual void finalizeChunk(btChunk *chunk, const char *structType, int chunkCode, void *oldPtr)=0
virtual void predictMotion(btScalar solverdt)=0
virtual bool checkInitialized()=0
virtual ~btSoftBodySolver()
virtual void updateSoftBodies()=0
virtual void solveConstraints(btScalar solverdt)=0
virtual void optimize(btAlignedObjectArray< btSoftBody * > &softBodies, bool forceUpdate=false)=0
void defaultCollisionHandler(const btCollisionObjectWrapper *pcoWrap)
bool rayTest(const btVector3 &rayFrom, const btVector3 &rayTo, sRayCast &results)
Ray casting using rayFrom and rayTo in worldspace, (not direction!)
void setSoftBodySolver(btSoftBodySolver *softBodySolver)
Definition: btSoftBody.h:1103
tFaceArray m_faces
Definition: btSoftBody.h:802
static void solveClusters(const btAlignedObjectArray< btSoftBody * > &bodies)
static const btSoftBody * upcast(const btCollisionObject *colObj)
Definition: btSoftBody.h:1128
static void rayTestSingle(const btTransform &rayFromTrans, const btTransform &rayToTrans, btCollisionObject *collisionObject, const btCollisionShape *collisionShape, const btTransform &colObjWorldTransform, RayResultCallback &resultCallback)
void serializeSoftBodies(btSerializer *serializer)
void removeSoftBody(btSoftBody *body)
btSoftBodyArray & getSoftBodyArray()
void addSoftBody(btSoftBody *body, int collisionFilterGroup=btBroadphaseProxy::DefaultFilter, int collisionFilterMask=btBroadphaseProxy::AllFilter)
virtual void rayTest(const btVector3 &rayFromWorld, const btVector3 &rayToWorld, RayResultCallback &resultCallback) const
static void rayTestSingle(const btTransform &rayFromTrans, const btTransform &rayToTrans, btCollisionObject *collisionObject, const btCollisionShape *collisionShape, const btTransform &colObjWorldTransform, RayResultCallback &resultCallback)
virtual void predictUnconstraintMotion(btScalar timeStep)
virtual void serialize(btSerializer *serializer)
virtual void internalSingleStepSimulation(btScalar timeStep)
btSoftRigidDynamicsWorld(btDispatcher *dispatcher, btBroadphaseInterface *pairCache, btConstraintSolver *constraintSolver, btCollisionConfiguration *collisionConfiguration, btSoftBodySolver *softBodySolver=0)
virtual void removeCollisionObject(btCollisionObject *collisionObject)
removeCollisionObject will first check if it is a rigid body, if so call removeRigidBody otherwise ca...
void solveSoftBodiesConstraints(btScalar timeStep)
World world
int len
Definition: draw_manager.c:108
IconTextureDrawCall normal
btVector3 m_rayDirectionInverse
added some cached data to accelerate ray-AABB tests
RayResultCallback is used to report new raycast results.
virtual bool needsCollision(btBroadphaseProxy *proxy0) const
static void DrawNodeTree(btSoftBody *psb, btIDebugDraw *idraw, int mindepth=0, int maxdepth=-1)
static void DrawFaceTree(btSoftBody *psb, btIDebugDraw *idraw, int mindepth=0, int maxdepth=-1)
static void DrawClusterTree(btSoftBody *psb, btIDebugDraw *idraw, int mindepth=0, int maxdepth=-1)
static void Draw(btSoftBody *psb, btIDebugDraw *idraw, int drawflags=fDrawFlags::Std)
static void DrawFrame(btSoftBody *psb, btIDebugDraw *idraw)
btScalar air_density
Definition: btSoftBody.h:49
btDispatcher * m_dispatcher
Definition: btSoftBody.h:55
btScalar water_density
Definition: btSoftBody.h:50
btSparseSdf< 3 > m_sparsesdf
Definition: btSoftBody.h:57
btVector3 m_gravity
Definition: btSoftBody.h:56
btVector3 water_normal
Definition: btSoftBody.h:53
btScalar water_offset
Definition: btSoftBody.h:51
btBroadphaseInterface * m_broadphase
Definition: btSoftBody.h:54
eFeature::_ feature
soft body
Definition: btSoftBody.h:204
btScalar fraction
feature index
Definition: btSoftBody.h:206
int index
feature type
Definition: btSoftBody.h:205
const btSoftMultiBodyDynamicsWorld * m_world
const btSoftRigidDynamicsWorld * m_world
btCollisionWorld::RayResultCallback & m_resultCallback
virtual bool process(const btBroadphaseProxy *proxy)
btSoftSingleRayCallback(const btVector3 &rayFromWorld, const btVector3 &rayToWorld, const btSoftRigidDynamicsWorld *world, btCollisionWorld::RayResultCallback &resultCallback)
void Reset()
Definition: btSparseSDF.h:116
void Initialize(int hashsize=2383, int clampCells=256 *1024)
Definition: btSparseSDF.h:100
PointerRNA * ptr
Definition: wm_files.c:3480