Blender  V3.3
btPreconditioner.h
Go to the documentation of this file.
1 /*
2  Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
3 
4  Bullet Continuous Collision Detection and Physics Library
5  Copyright (c) 2019 Google Inc. http://bulletphysics.org
6  This software is provided 'as-is', without any express or implied warranty.
7  In no event will the authors be held liable for any damages arising from the use of this software.
8  Permission is granted to anyone to use this software for any purpose,
9  including commercial applications, and to alter it and redistribute it freely,
10  subject to the following restrictions:
11  1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12  2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13  3. This notice may not be removed or altered from any source distribution.
14  */
15 
16 #ifndef BT_PRECONDITIONER_H
17 #define BT_PRECONDITIONER_H
18 
20 {
21 public:
23  virtual void operator()(const TVStack& x, TVStack& b) = 0;
24  virtual void reinitialize(bool nodeUpdated) = 0;
25  virtual ~Preconditioner() {}
26 };
27 
29 {
30 public:
31  virtual void operator()(const TVStack& x, TVStack& b)
32  {
33  btAssert(b.size() == x.size());
34  for (int i = 0; i < b.size(); ++i)
35  b[i] = x[i];
36  }
37  virtual void reinitialize(bool nodeUpdated)
38  {
39  }
40 
42 };
43 
45 {
47  const btAlignedObjectArray<btSoftBody*>& m_softBodies;
48 
49 public:
51  : m_softBodies(softBodies)
52  {
53  }
54 
55  virtual void reinitialize(bool nodeUpdated)
56  {
57  if (nodeUpdated)
58  {
59  m_inv_mass.clear();
60  for (int i = 0; i < m_softBodies.size(); ++i)
61  {
62  btSoftBody* psb = m_softBodies[i];
63  for (int j = 0; j < psb->m_nodes.size(); ++j)
64  m_inv_mass.push_back(psb->m_nodes[j].m_im);
65  }
66  }
67  }
68 
69  virtual void operator()(const TVStack& x, TVStack& b)
70  {
71  btAssert(b.size() == x.size());
72  btAssert(m_inv_mass.size() <= x.size());
73  for (int i = 0; i < m_inv_mass.size(); ++i)
74  {
75  b[i] = x[i] * m_inv_mass[i];
76  }
77  for (int i = m_inv_mass.size(); i < b.size(); ++i)
78  {
79  b[i] = x[i];
80  }
81  }
82 };
83 
85 {
86  const btAlignedObjectArray<btSoftBody*>& m_softBodies;
87  const btDeformableContactProjection& m_projections;
89  TVStack m_inv_A, m_inv_S;
90  const btScalar& m_dt;
91  const bool& m_implicit;
92 
93 public:
95  : m_softBodies(softBodies), m_projections(projections), m_lf(lf), m_dt(dt), m_implicit(implicit)
96  {
97  }
98 
99  virtual void reinitialize(bool nodeUpdated)
100  {
101  if (nodeUpdated)
102  {
103  int num_nodes = 0;
104  for (int i = 0; i < m_softBodies.size(); ++i)
105  {
106  btSoftBody* psb = m_softBodies[i];
107  num_nodes += psb->m_nodes.size();
108  }
109  m_inv_A.resize(num_nodes);
110  }
111  buildDiagonalA(m_inv_A);
112  for (int i = 0; i < m_inv_A.size(); ++i)
113  {
114  // printf("A[%d] = %f, %f, %f \n", i, m_inv_A[i][0], m_inv_A[i][1], m_inv_A[i][2]);
115  for (int d = 0; d < 3; ++d)
116  {
117  m_inv_A[i][d] = (m_inv_A[i][d] == 0) ? 0.0 : 1.0 / m_inv_A[i][d];
118  }
119  }
120  m_inv_S.resize(m_projections.m_lagrangeMultipliers.size());
121  // printf("S.size() = %d \n", m_inv_S.size());
122  buildDiagonalS(m_inv_A, m_inv_S);
123  for (int i = 0; i < m_inv_S.size(); ++i)
124  {
125  // printf("S[%d] = %f, %f, %f \n", i, m_inv_S[i][0], m_inv_S[i][1], m_inv_S[i][2]);
126  for (int d = 0; d < 3; ++d)
127  {
128  m_inv_S[i][d] = (m_inv_S[i][d] == 0) ? 0.0 : 1.0 / m_inv_S[i][d];
129  }
130  }
131  }
132 
133  void buildDiagonalA(TVStack& diagA) const
134  {
135  size_t counter = 0;
136  for (int i = 0; i < m_softBodies.size(); ++i)
137  {
138  btSoftBody* psb = m_softBodies[i];
139  for (int j = 0; j < psb->m_nodes.size(); ++j)
140  {
141  const btSoftBody::Node& node = psb->m_nodes[j];
142  diagA[counter] = (node.m_im == 0) ? btVector3(0, 0, 0) : btVector3(1.0 / node.m_im, 1.0 / node.m_im, 1.0 / node.m_im);
143  ++counter;
144  }
145  }
146  if (m_implicit)
147  {
148  printf("implicit not implemented\n");
149  btAssert(false);
150  }
151  for (int i = 0; i < m_lf.size(); ++i)
152  {
153  // add damping matrix
154  m_lf[i]->buildDampingForceDifferentialDiagonal(-m_dt, diagA);
155  }
156  }
157 
158  void buildDiagonalS(const TVStack& inv_A, TVStack& diagS)
159  {
160  for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
161  {
162  // S[k,k] = e_k^T * C A_d^-1 C^T * e_k
163  const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
164  btVector3& t = diagS[c];
165  t.setZero();
166  for (int j = 0; j < lm.m_num_constraints; ++j)
167  {
168  for (int i = 0; i < lm.m_num_nodes; ++i)
169  {
170  for (int d = 0; d < 3; ++d)
171  {
172  t[j] += inv_A[lm.m_indices[i]][d] * lm.m_dirs[j][d] * lm.m_dirs[j][d] * lm.m_weights[i] * lm.m_weights[i];
173  }
174  }
175  }
176  }
177  }
178 //#define USE_FULL_PRECONDITIONER
179 #ifndef USE_FULL_PRECONDITIONER
180  virtual void operator()(const TVStack& x, TVStack& b)
181  {
182  btAssert(b.size() == x.size());
183  for (int i = 0; i < m_inv_A.size(); ++i)
184  {
185  b[i] = x[i] * m_inv_A[i];
186  }
187  int offset = m_inv_A.size();
188  for (int i = 0; i < m_inv_S.size(); ++i)
189  {
190  b[i + offset] = x[i + offset] * m_inv_S[i];
191  }
192  }
193 #else
194  virtual void operator()(const TVStack& x, TVStack& b)
195  {
196  btAssert(b.size() == x.size());
197  int offset = m_inv_A.size();
198 
199  for (int i = 0; i < m_inv_A.size(); ++i)
200  {
201  b[i] = x[i] * m_inv_A[i];
202  }
203 
204  for (int i = 0; i < m_inv_S.size(); ++i)
205  {
206  b[i + offset].setZero();
207  }
208 
209  for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
210  {
211  const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
212  // C * x
213  for (int d = 0; d < lm.m_num_constraints; ++d)
214  {
215  for (int i = 0; i < lm.m_num_nodes; ++i)
216  {
217  b[offset + c][d] += lm.m_weights[i] * b[lm.m_indices[i]].dot(lm.m_dirs[d]);
218  }
219  }
220  }
221 
222  for (int i = 0; i < m_inv_S.size(); ++i)
223  {
224  b[i + offset] = b[i + offset] * m_inv_S[i];
225  }
226 
227  for (int i = 0; i < m_inv_A.size(); ++i)
228  {
229  b[i].setZero();
230  }
231 
232  for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
233  {
234  // C^T * lambda
235  const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
236  for (int i = 0; i < lm.m_num_nodes; ++i)
237  {
238  for (int j = 0; j < lm.m_num_constraints; ++j)
239  {
240  b[lm.m_indices[i]] += b[offset + c][j] * lm.m_weights[i] * lm.m_dirs[j];
241  }
242  }
243  }
244 
245  for (int i = 0; i < m_inv_A.size(); ++i)
246  {
247  b[i] = (x[i] - b[i]) * m_inv_A[i];
248  }
249 
250  TVStack t;
251  t.resize(b.size());
252  for (int i = 0; i < m_inv_S.size(); ++i)
253  {
254  t[i + offset] = x[i + offset] * m_inv_S[i];
255  }
256  for (int i = 0; i < m_inv_A.size(); ++i)
257  {
258  t[i].setZero();
259  }
260  for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
261  {
262  // C^T * lambda
263  const LagrangeMultiplier& lm = m_projections.m_lagrangeMultipliers[c];
264  for (int i = 0; i < lm.m_num_nodes; ++i)
265  {
266  for (int j = 0; j < lm.m_num_constraints; ++j)
267  {
268  t[lm.m_indices[i]] += t[offset + c][j] * lm.m_weights[i] * lm.m_dirs[j];
269  }
270  }
271  }
272  for (int i = 0; i < m_inv_A.size(); ++i)
273  {
274  b[i] += t[i] * m_inv_A[i];
275  }
276 
277  for (int i = 0; i < m_inv_S.size(); ++i)
278  {
279  b[i + offset] -= x[i + offset] * m_inv_S[i];
280  }
281  }
282 #endif
283 };
284 
285 #endif /* BT_PRECONDITIONER_H */
_GL_VOID GLfloat value _GL_VOID_RET _GL_VOID const GLuint GLboolean *residences _GL_BOOL_RET _GL_VOID GLsizei GLfloat GLfloat GLfloat GLfloat const GLubyte *bitmap _GL_VOID_RET _GL_VOID GLenum const void *lists _GL_VOID_RET _GL_VOID const GLdouble *equation _GL_VOID_RET _GL_VOID GLdouble GLdouble blue _GL_VOID_RET _GL_VOID GLfloat GLfloat blue _GL_VOID_RET _GL_VOID GLint GLint blue _GL_VOID_RET _GL_VOID GLshort GLshort blue _GL_VOID_RET _GL_VOID GLubyte GLubyte blue _GL_VOID_RET _GL_VOID GLuint GLuint blue _GL_VOID_RET _GL_VOID GLushort GLushort blue _GL_VOID_RET _GL_VOID GLbyte GLbyte GLbyte alpha _GL_VOID_RET _GL_VOID GLdouble GLdouble GLdouble alpha _GL_VOID_RET _GL_VOID GLfloat GLfloat GLfloat alpha _GL_VOID_RET _GL_VOID GLint GLint GLint alpha _GL_VOID_RET _GL_VOID GLshort GLshort GLshort alpha _GL_VOID_RET _GL_VOID GLubyte GLubyte GLubyte alpha _GL_VOID_RET _GL_VOID GLuint GLuint GLuint alpha _GL_VOID_RET _GL_VOID GLushort GLushort GLushort alpha _GL_VOID_RET _GL_VOID GLenum mode _GL_VOID_RET _GL_VOID GLint GLsizei GLsizei GLenum type _GL_VOID_RET _GL_VOID GLsizei GLenum GLenum const void *pixels _GL_VOID_RET _GL_VOID const void *pointer _GL_VOID_RET _GL_VOID GLdouble v _GL_VOID_RET _GL_VOID GLfloat v _GL_VOID_RET _GL_VOID GLint GLint i2 _GL_VOID_RET _GL_VOID GLint j _GL_VOID_RET _GL_VOID GLfloat param _GL_VOID_RET _GL_VOID GLint param _GL_VOID_RET _GL_VOID GLdouble GLdouble GLdouble GLdouble GLdouble zFar _GL_VOID_RET _GL_UINT GLdouble *equation _GL_VOID_RET _GL_VOID GLenum GLint *params _GL_VOID_RET _GL_VOID GLenum GLfloat *v _GL_VOID_RET _GL_VOID GLenum GLfloat *params _GL_VOID_RET _GL_VOID GLfloat *values _GL_VOID_RET _GL_VOID GLushort *values _GL_VOID_RET _GL_VOID GLenum GLfloat *params _GL_VOID_RET _GL_VOID GLenum GLdouble *params _GL_VOID_RET _GL_VOID GLenum GLint *params _GL_VOID_RET _GL_VOID GLsizei const void *pointer _GL_VOID_RET _GL_VOID GLsizei const void *pointer _GL_VOID_RET _GL_BOOL GLfloat param _GL_VOID_RET _GL_VOID GLint param _GL_VOID_RET _GL_VOID GLenum GLfloat param _GL_VOID_RET _GL_VOID GLenum GLint param _GL_VOID_RET _GL_VOID GLushort pattern _GL_VOID_RET _GL_VOID GLdouble GLdouble GLint GLint const GLdouble *points _GL_VOID_RET _GL_VOID GLdouble GLdouble GLint GLint GLdouble GLdouble GLint GLint const GLdouble *points _GL_VOID_RET _GL_VOID GLdouble GLdouble u2 _GL_VOID_RET _GL_VOID GLdouble GLdouble GLint GLdouble GLdouble v2 _GL_VOID_RET _GL_VOID GLenum GLfloat param _GL_VOID_RET _GL_VOID GLenum GLint param _GL_VOID_RET _GL_VOID GLenum mode _GL_VOID_RET _GL_VOID GLdouble GLdouble nz _GL_VOID_RET _GL_VOID GLfloat GLfloat nz _GL_VOID_RET _GL_VOID GLint GLint nz _GL_VOID_RET _GL_VOID GLshort GLshort nz _GL_VOID_RET _GL_VOID GLsizei const void *pointer _GL_VOID_RET _GL_VOID GLsizei const GLfloat *values _GL_VOID_RET _GL_VOID GLsizei const GLushort *values _GL_VOID_RET _GL_VOID GLint param _GL_VOID_RET _GL_VOID const GLuint const GLclampf *priorities _GL_VOID_RET _GL_VOID GLdouble y _GL_VOID_RET _GL_VOID GLfloat y _GL_VOID_RET _GL_VOID GLint y _GL_VOID_RET _GL_VOID GLshort y _GL_VOID_RET _GL_VOID GLdouble GLdouble z _GL_VOID_RET _GL_VOID GLfloat GLfloat z _GL_VOID_RET _GL_VOID GLint GLint z _GL_VOID_RET _GL_VOID GLshort GLshort z _GL_VOID_RET _GL_VOID GLdouble GLdouble GLdouble w _GL_VOID_RET _GL_VOID GLfloat GLfloat GLfloat w _GL_VOID_RET _GL_VOID GLint GLint GLint w _GL_VOID_RET _GL_VOID GLshort GLshort GLshort w _GL_VOID_RET _GL_VOID GLdouble GLdouble GLdouble y2 _GL_VOID_RET _GL_VOID GLfloat GLfloat GLfloat y2 _GL_VOID_RET _GL_VOID GLint GLint GLint y2 _GL_VOID_RET _GL_VOID GLshort GLshort GLshort y2 _GL_VOID_RET _GL_VOID GLdouble GLdouble GLdouble z _GL_VOID_RET _GL_VOID GLdouble GLdouble z _GL_VOID_RET _GL_VOID GLuint *buffer _GL_VOID_RET _GL_VOID GLdouble t _GL_VOID_RET _GL_VOID GLfloat t _GL_VOID_RET _GL_VOID GLint t _GL_VOID_RET _GL_VOID GLshort t _GL_VOID_RET _GL_VOID GLdouble t
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btAssert(x)
Definition: btScalar.h:295
btVector3
btVector3 can be used to represent 3D points and vectors. It has an un-used w component to suit 16-by...
Definition: btVector3.h:82
virtual void operator()(const TVStack &x, TVStack &b)
virtual void reinitialize(bool nodeUpdated)
virtual ~DefaultPreconditioner()
KKTPreconditioner(const btAlignedObjectArray< btSoftBody * > &softBodies, const btDeformableContactProjection &projections, const btAlignedObjectArray< btDeformableLagrangianForce * > &lf, const btScalar &dt, const bool &implicit)
void buildDiagonalA(TVStack &diagA) const
virtual void reinitialize(bool nodeUpdated)
void buildDiagonalS(const TVStack &inv_A, TVStack &diagS)
virtual void operator()(const TVStack &x, TVStack &b)
virtual void reinitialize(bool nodeUpdated)
MassPreconditioner(const btAlignedObjectArray< btSoftBody * > &softBodies)
virtual void operator()(const TVStack &x, TVStack &b)
virtual void reinitialize(bool nodeUpdated)=0
btAlignedObjectArray< btVector3 > TVStack
virtual ~Preconditioner()
virtual void operator()(const TVStack &x, TVStack &b)=0
SIMD_FORCE_INLINE void clear()
clear the array, deallocated memory. Generally it is better to use array.resize(0),...
SIMD_FORCE_INLINE int size() const
return the number of elements in the array
SIMD_FORCE_INLINE void resize(int newsize, const T &fillData=T())
SIMD_FORCE_INLINE void push_back(const T &_Val)
btAlignedObjectArray< LagrangeMultiplier > m_lagrangeMultipliers
tNodeArray m_nodes
Definition: btSoftBody.h:799
OperationNode * node
ccl_gpu_kernel_postfix ccl_global int * counter
ccl_gpu_kernel_postfix ccl_global float int int int int float bool int offset
static unsigned c
Definition: RandGen.cpp:83
static const pxr::TfToken b("b", pxr::TfToken::Immortal)