Blender  V3.3
btGhostObject.cpp
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #include "btGhostObject.h"
17 #include "btCollisionWorld.h"
19 #include "LinearMath/btAabbUtil2.h"
20 
22 {
24 }
25 
27 {
29  btAssert(!m_overlappingObjects.size());
30 }
31 
33 {
34  btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
35  btAssert(otherObject);
37  int index = m_overlappingObjects.findLinearSearch(otherObject);
38  if (index == m_overlappingObjects.size())
39  {
40  //not found
41  m_overlappingObjects.push_back(otherObject);
42  }
43 }
44 
46 {
47  btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
48  btAssert(otherObject);
49  int index = m_overlappingObjects.findLinearSearch(otherObject);
50  if (index < m_overlappingObjects.size())
51  {
52  m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size() - 1];
53  m_overlappingObjects.pop_back();
54  }
55 }
56 
58 {
59  m_hashPairCache = new (btAlignedAlloc(sizeof(btHashedOverlappingPairCache), 16)) btHashedOverlappingPairCache();
60 }
61 
63 {
64  m_hashPairCache->~btHashedOverlappingPairCache();
65  btAlignedFree(m_hashPairCache);
66 }
67 
69 {
70  btBroadphaseProxy* actualThisProxy = thisProxy ? thisProxy : getBroadphaseHandle();
71  btAssert(actualThisProxy);
72 
73  btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
74  btAssert(otherObject);
75  int index = m_overlappingObjects.findLinearSearch(otherObject);
76  if (index == m_overlappingObjects.size())
77  {
78  m_overlappingObjects.push_back(otherObject);
79  m_hashPairCache->addOverlappingPair(actualThisProxy, otherProxy);
80  }
81 }
82 
84 {
85  btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
86  btBroadphaseProxy* actualThisProxy = thisProxy1 ? thisProxy1 : getBroadphaseHandle();
87  btAssert(actualThisProxy);
88 
89  btAssert(otherObject);
90  int index = m_overlappingObjects.findLinearSearch(otherObject);
91  if (index < m_overlappingObjects.size())
92  {
93  m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size() - 1];
94  m_overlappingObjects.pop_back();
95  m_hashPairCache->removeOverlappingPair(actualThisProxy, otherProxy, dispatcher);
96  }
97 }
98 
99 void btGhostObject::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
100 {
101  btTransform convexFromTrans, convexToTrans;
102  convexFromTrans = convexFromWorld;
103  convexToTrans = convexToWorld;
104  btVector3 castShapeAabbMin, castShapeAabbMax;
105  /* Compute AABB that encompasses angular movement */
106  {
107  btVector3 linVel, angVel;
108  btTransformUtil::calculateVelocity(convexFromTrans, convexToTrans, 1.0, linVel, angVel);
109  btTransform R;
110  R.setIdentity();
111  R.setRotation(convexFromTrans.getRotation());
112  castShape->calculateTemporalAabb(R, linVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax);
113  }
114 
116  // do a ray-shape query using convexCaster (CCD)
117  int i;
118  for (i = 0; i < m_overlappingObjects.size(); i++)
119  {
120  btCollisionObject* collisionObject = m_overlappingObjects[i];
121  //only perform raycast if filterMask matches
122  if (resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
123  {
124  //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
125  btVector3 collisionObjectAabbMin, collisionObjectAabbMax;
126  collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(), collisionObjectAabbMin, collisionObjectAabbMax);
127  AabbExpand(collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
128  btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
129  btVector3 hitNormal;
130  if (btRayAabb(convexFromWorld.getOrigin(), convexToWorld.getOrigin(), collisionObjectAabbMin, collisionObjectAabbMax, hitLambda, hitNormal))
131  {
132  btCollisionWorld::objectQuerySingle(castShape, convexFromTrans, convexToTrans,
133  collisionObject,
134  collisionObject->getCollisionShape(),
135  collisionObject->getWorldTransform(),
136  resultCallback,
137  allowedCcdPenetration);
138  }
139  }
140  }
141 }
142 
143 void btGhostObject::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
144 {
145  btTransform rayFromTrans;
146  rayFromTrans.setIdentity();
147  rayFromTrans.setOrigin(rayFromWorld);
148  btTransform rayToTrans;
149  rayToTrans.setIdentity();
150  rayToTrans.setOrigin(rayToWorld);
151 
152  int i;
153  for (i = 0; i < m_overlappingObjects.size(); i++)
154  {
155  btCollisionObject* collisionObject = m_overlappingObjects[i];
156  //only perform raycast if filterMask matches
157  if (resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
158  {
159  btCollisionWorld::rayTestSingle(rayFromTrans, rayToTrans,
160  collisionObject,
161  collisionObject->getCollisionShape(),
162  collisionObject->getWorldTransform(),
163  resultCallback);
164  }
165  }
166 }
SIMD_FORCE_INLINE bool btRayAabb(const btVector3 &rayFrom, const btVector3 &rayTo, const btVector3 &aabbMin, const btVector3 &aabbMax, btScalar &param, btVector3 &normal)
Definition: btAabbUtil2.h:117
SIMD_FORCE_INLINE void AabbExpand(btVector3 &aabbMin, btVector3 &aabbMax, const btVector3 &expansionMin, const btVector3 &expansionMax)
Definition: btAabbUtil2.h:22
#define btAlignedFree(ptr)
#define btAlignedAlloc(size, alignment)
btBroadphaseProxy
btCollisionObject
SIMD_FORCE_INLINE btBroadphaseProxy * getBroadphaseHandle()
@ CO_GHOST_OBJECT
int m_internalType
btConvexShape()
not supported on IBM SDK, until we fix the alignment of btVector3
void convexSweepTest(const class btConvexShape *castShape, const btTransform &convexFromWorld, const btTransform &convexToWorld, btCollisionWorld::ConvexResultCallback &resultCallback, btScalar allowedCcdPenetration=0.f) const
virtual void addOverlappingObjectInternal(btBroadphaseProxy *otherProxy, btBroadphaseProxy *thisProxy=0)
this method is mainly for expert/internal use only.
btGhostObject()
virtual void removeOverlappingObjectInternal(btBroadphaseProxy *otherProxy, btDispatcher *dispatcher, btBroadphaseProxy *thisProxy=0)
this method is mainly for expert/internal use only.
virtual ~btGhostObject()
void rayTest(const btVector3 &rayFromWorld, const btVector3 &rayToWorld, btCollisionWorld::RayResultCallback &resultCallback) const
btHashedOverlappingPairCache()
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btAssert(x)
Definition: btScalar.h:295
btTransform
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:30
btVector3
btVector3 can be used to represent 3D points and vectors. It has an un-used w component to suit 16-by...
Definition: btVector3.h:82
static void objectQuerySingle(const btConvexShape *castShape, const btTransform &rayFromTrans, const btTransform &rayToTrans, btCollisionObject *collisionObject, const btCollisionShape *collisionShape, const btTransform &colObjWorldTransform, ConvexResultCallback &resultCallback, btScalar allowedPenetration)
objectQuerySingle performs a collision detection query and calls the resultCallback....
static void rayTestSingle(const btTransform &rayFromTrans, const btTransform &rayToTrans, btCollisionObject *collisionObject, const btCollisionShape *collisionShape, const btTransform &colObjWorldTransform, RayResultCallback &resultCallback)
virtual void addOverlappingObjectInternal(btBroadphaseProxy *otherProxy, btBroadphaseProxy *thisProxy=0)
this method is mainly for expert/internal use only.
virtual void removeOverlappingObjectInternal(btBroadphaseProxy *otherProxy, btDispatcher *dispatcher, btBroadphaseProxy *thisProxy=0)
static void calculateVelocity(const btTransform &transform0, const btTransform &transform1, btScalar timeStep, btVector3 &linVel, btVector3 &angVel)
#define R
RayResultCallback is used to report new raycast results.
virtual bool needsCollision(btBroadphaseProxy *proxy0) const
RayResultCallback is used to report new raycast results.
virtual bool needsCollision(btBroadphaseProxy *proxy0) const