
Algorithmic Di�erentiation in Python with AlgoPy

Sebastian F. Walter, Lutz Lehmann

Institut für Mathematik, Fakultät Mat.-Nat. II, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin

Abstract

Many programs for scienti�c computing in Python are based on NumPy and therefore make heavy use
of numerical linear algebra (NLA) functions, vectorized operations, slicing and broadcasting. AlgoPy
provides the means to compute derivatives of arbitrary order and Taylor approximations of such pro-
grams. The approach is based on a combination of univariate Taylor polynomial arithmetic and matrix
calculus in the (combined) forward/reverse mode of Algorithmic Di�erentiation (AD). In contrast to
existing AD tools, vectorized operations and NLA functions are not considered to be a sequence of
scalar elementary functions. Instead, dedicated algorithms for the matrix product, matrix inverse and
the Cholesky, QR, and symmetric eigenvalue decomposition are implemented in AlgoPy. We discuss
the reasons for this alternative approach and explain the underlying idea. Examples illustrate how
AlgoPy can be used from a user's point of view.

Keywords: automatic di�erentiation, Cholesky decomposition, hierarchical approach, higher-order
derivatives, numerical linear algebra, NumPy, Taylor arithmetic

1. Introduction

In scienti�c computing, mathematical func-
tions are described by computer programs. Algo-
rithmic (aka Automatic) Di�erentiation (AD) can
be used to obtain polynomial approximations and
derivative tensors of such functions in an e�cient
and numerically stable way. It is also suitable
for programs with thousands of lines of code and
is not to be confused with symbolic or numerical
di�erentiation. The website www.autodiff.org

provides an overview of current and past research.
See also the standard references [16, 15, 3]. The
most important features of AD are:

1. The computed derivatives have a �nite-
precision error on par with the nominal
function evaluation.

2. The number of operations OPS({f,∇f}) to
evaluate both the function f : RN → R

Email addresses: sebastian.walter@gmail.com

(Sebastian F. Walter),
llehmann@mathematik.hu-berlin.de (Lutz Lehmann)

and its gradient ∇f is less than ω ·OPS(f),
where ω ∈ [3, 4]. The gradient is thus at
most four times more expensive than the
function itself, no matter what N is [16].
Please note that this is a theoretical result:
the actually observed ratio on a computer is
generally worse.

3. It is possible to write programs in such a
way that an AD tool can be applied with
no or only small changes to the code.

Python is a popular programming language for
scienti�c computing [34, 33]. It has a clear syn-
tax, a large standard library and there exist many
packages useful for scienti�c computing. The
de facto standard for array and matrix manipula-
tions is provided by the package NumPy [26] and
thus many scienti�c programs in Python make use
of it. In consequence, concepts such as broadcast-
ing, slicing, element-wise operations (ufuncs) and
numerical linear algebra functions (NLA) are used
on a regular basis.

Preprint submitted to Journal of Computational Science October 2, 2012

www.autodiff.org

The tool AlgoPy provides the possibility to
compute high-order univariate Taylor polyno-
mial approximations and derivatives (gradient
and Hessian) of such programs. It is implemented
in pure Python and has only NumPy and SciPy
[20] as dependencies. O�cial releases can be ob-
tained from [36].

The purpose of this paper is to serve as a ref-
erence for AlgoPy and to popularize its unique
ideas. The target audience are potential users of
AlgoPy as well as developers of other AD tools.

• We brie�y discuss the forward and reverse
mode of AD in Section 2. It is not the goal
to provide a tutorial, but to explain how
the theory is related to the implementation.
We deem this discussion important for two
reasons:

1. It equips the user with the necessary
know-how to extend the functionality
of AlgoPy.

2. To debug code it is necessary to un-
derstand what is happening behind the
scenes.

• AlgoPy o�ers dedicated support for several
numerical linear algebra functions such as
the Cholesky, QR and real symmetric eigen-
value decomposition. This is, to the au-
thors' best knowledge, a unique feature of
AlgoPy. In Section 3 we give a concise de-
scription of the approach.

• Finally, we compare in Section 4 the run-
time of several related tools on some simple
test examples to allow a potential user to
decide whether the current state of AlgoPy
is e�cient enough for the task at hand.

2. Relating Theory and Implementation

The purpose of this section is to summarize
the forward and reverse mode of AD and describe
how these two concepts are implemented in Al-
goPy.

independent v−1 = x1 = 3
independent v0 = x2 = 7

v1 = φ1(v0) = cos(v0)
v2 = φ2(v1, v−1) = v1v−1

v3 = φ3(v−1, v2) = v−1 + v2

v4 = φ4(v3) = sin(v3)
dependent y = v4

Table 1: The three-part form of the function f(x) =
sin(x1 + cos(x2)x1).

2.1. Computational Model

Let F : RN → RM , x 7→ y = F (x) be the
function of interest. We require that it can be
written as a �nite sequence of di�erentiable in-
structions. Traditionally, the instructions include
±,×,÷,

√
·, exp (·) and the (hyperbolic) trigono-

metric functions as well as their inverse functions.
We refer to them as scalar elementary functions

to distinguish them from vector and matrix oper-
ations as they will be discussed in Section 3. The
quantity x is called the independent variable and
y the dependent variable. In the important special
case M = 1 we use f instead of F .

As an example, consider the function f : R2 →
R, x 7→ y = f(x) = sin(x1 + cos(x2)x1). The se-
quence of operations to evaluate f(3, 7) is shown
in Table 1. This representation is called three-part
form. Each intermediate variable is computed by
an elementary function call vl = φl(vi≺l), where
vi≺l is the tuple of input arguments of φl. For
a more detailed discussion of the computational
model and its relation to algorithmic di�erentia-
tion see Griewank [14]. Alternatively one can rep-
resent the computational sequence also as compu-
tational graph. This is shown in Figure (1).

2.2. Forward Mode

We follow the approach of ADOL-C [16] and
use univariate Taylor polynomial (UTP) arith-
metic to evaluate derivatives in the forward mode
of AD. One can �nd a comprehensive introduction
of the approach in [25].

Let ε > 0 and F : RN → RM be su�ciently
smooth. De�ne the smooth curve y(t) = F (x(t))
for a given smooth curve x : (−ε, ε) ∈ RN . One
can compute the �rst directional derivative of F

2

0 Id

3 mul

4 add

1 Id

2 cos

5 sin

Figure 1: This plot shows the computational graph of
the function f(x) = sin(x1 + cos(x2)x1). The independent
and dependent variables are depicted as octagons whereas
intermediate variables are represented as rectangles.

by setting x(t) = x[0] + x[1]t and computing the
�rst-order Taylor approximation

y[0] + y[1]t = F (x[0] + x[1]t) +O(t2)

= F (x[0]) +
dF

dt
(x(t))

∣∣∣∣
t=0

t .

The use of the chain rule yields the directional
derivative

dF

dt
(x(t))

∣∣∣∣
t=0

=
∂F

∂x
(x[0]) · x[1] .

E.g., by choosing x[1] to be the i-th Cartesian basis

vector ei one obtains
∂F
∂xi

(x)
∣∣∣
x=x[0]

as result.

The important point to notice is that the de-
sired directional derivative does not depend on
t. To generalize the idea to higher-order deriva-
tives, one extends functions F : RN → RM , x 7→
y = F (x), to functions ED(F) : RN [T]/(TD) →
RM [T]/(TD), [y]D = ED(F)([x]D). We de-
note representatives of the polynomial factor ring
RN [T]/(TD) as

[x]D := [x[1], . . . , x[D−1]] :=
D−1∑
d=0

x[d]T
d , (1)

where x[d] ∈ RN is called a Taylor coe�cient. The
quantity T is an indeterminate, i.e., a formal vari-
able. It plays a similar role for the polynomials
as i :=

√
−1 for the complex numbers. We make

a distinction between t and T to stress that t is
regarded as real variable whereas T is an indeter-
minate. The extended function ED(F) is de�ned

by its action

[y]D =
D−1∑
d=0

y[d]T
d = ED(F)([x]D) (2)

=
D−1∑
d=0

1

d!

dd

dtd
F
(D−1∑
d=0

x[d]t
d
)∣∣∣∣∣
t=0

T d .

The fundamental result of the forward mode
is that the operator ED is a function composi-
tion preserving homomorphism. Explicitly, for
any su�ciently di�erentiable composite function
F (x) = (H ◦G)(x) = H(G(x)) it holds that

ED(H ◦G) = ED(H) ◦ ED(G) . (3)

Since any function satisfying the assumptions
from Section 2.1 can be written as such a com-
posite function (c.f. [14]), it completely su�ces to
provide algorithms for [y]D = ED(φ)([x]D), where

φ ∈ {±,×,÷, sin, exp, . . . } .

Table (2) and Table (3) show an incomplete list
of the most important algorithms [16, 24]. They
are shown here to stress their similarity to the
algorithms shown in Section 3.

z = φ(x, y) d = 0, . . . , D
x+ cy z[d] = x[d] + cy[d]
x× y z[d] =

∑d
k=0 x[k]y[d−k]

x/y z[d] = 1
y[0]

[
x[d] −

∑d−1
k=0 z[k]y[d−k]

]
Table 2: UTP algorithms of binary scalar elementary
functions.

y = φ(x) d = 1, . . . , D

ln(x) ỹ[d] = 1
x[0]

[
x̃[d] −

∑d−1
k=1 x[d−k]ỹ[k]

]
exp(x) ỹ[d] =

∑d
k=1 y[d−k]x̃[k]√

x y[d] = 1
2y[0]

[
x[d] −

∑d−1
k=1 y[k]y[d−k]

]
Table 3: UTP algorithms for unary scalar elementary
functions. We use x̃[k] := kx[k]. The zeroth coe�cient is
computed as y[0] = φ(x[0]).

2.3. Forward Mode in AlgoPy

In AlgoPy one can compute on general UTP
operands

[x]D =
∑D−1

d=0
x[d]T

d ,

3

where x[d] is a tensor of arbitrary shape, e.g. a 3-
tensor x[d] ∈ RM×N×K . We call tuples of the form
(M,N,K) the shape of the UTP [x]D. The func-
tionality is wrapped in the class algopy.UTPM.
The Taylor coe�cients are stored in the attribute
UTPM.data as numpy ndarray. One could use an
ndarray with a shape of the form (D,M,N,K).
In other words, the �rst dimension is the number
of coe�cients, followed by the shape of the UTP.
However, since it is often necessary to compute
the same function with di�erent inputs, we de-
cided to use a data structure with a shape of the
form (D,P,M,N,K) for P simultaneous evalua-
tions. The class algopy.UTPM overloads the typi-
cal operators like ±,×,÷ as well as the methods
__getitem__ and __setitem__. It is also possi-
ble to create scalar UTPs, i.e., the numpy ndarray
UTPM.data can have the shape (D,P).

To show an illustrative example from calcu-
lus, we demonstrate how AlgoPy can compute
the series expansion of y1(t) = sin(t) and y2(t) =
sin
(
cos
(

1
1+t

))
. The code is shown in Listing 1.

from algopy import zeros , s in , cos , UTPM
D,P = 4 ,1
x = UTPM(ze ro s ((D,P)))
x . data [1] = 1
y1 = s in (x)
y2 = s i n (cos (1/(1+x)))
print (y1 . data [: , 0])
print (y2 . data [: , 0])

Listing 1: This example shows how AlgoPy can be used
for UTP arithmetic.

One can check that the output
[0 . 1 . 0 . −0.16666667]
[0 .51439526 0.72160615 −1.13538994 1 .46068226]

Listing 2: Output of Listing 1.

is indeed correct.

2.4. Reverse Mode

Let F : RN → RM , x 7→ y = F (x) be su�-
ciently smooth and de�ne

ẏ =
∂F

∂x
ẋ . (4)

The basic idea of the reverse mode is to regard
the linear form

ȳT ẏ =
M∑
m=1

ȳmẏm , (5)

and then apply a pullback. A pullback is the ac-
tion of going back one level of the functional de-
pendence which yields, according to the rules of
di�erential calculus, the relation

ȳT ẏ = ȳT
∂F (z)

∂z

∣∣∣∣
z=x

ẋ = x̄T ẋ , (6)

where ẏ ∈ RM , ẋ ∈ RN and x̄T = ȳT ∂F (z)
∂z

∣∣∣
z=x

.

Since we require the function F to be a sequence
of smooth elementary functions, one may apply
the chain rule. In consequence it is just neces-
sary to provide one pullback algorithm for each
elementary function.

Example. We consider again the example from
Table 1 and apply the reverse mode by hand. The
following calculation shows the successive pull-
backs of the linear forms:

ȳẏ = ȳv̇4 = ȳ
∂φ4(z)

∂z

∣∣∣∣
z=v3

v̇3 = ȳ cos(v3)︸ ︷︷ ︸
=v̄3

v̇3

= v̄3︸︷︷︸
=v̄−1

v̇−1 + v̄3︸︷︷︸
=v̄2

v̇2 = (v̄−1 + v̄2v1)︸ ︷︷ ︸
=v̄−1

v̇−1 + v̄2v−1︸ ︷︷ ︸
=v̄1

v̇1

= v̄−1v̇−1 + (−v̄1 sin(v0))︸ ︷︷ ︸
=v̄0

v̇0 .

Choosing ȳ = 1 one obtains v̄−1 ≡ ∂f
∂x1

and

v̄0 ≡ ∂f
∂x2

. Listing 3 shows a Python code where
the sequence of instructions of the successive pull-
backs are shown. From this simple example one
can already make several fundamental observa-
tions:

1. One reverts the direction of the function
evaluation to compute the gradient. Hence,
this is called reverse mode.

2. Each of the four instructions to evaluate the
function requires less than ω− 1 operations
during the reverse mode. To compute both
the function and the gradient thus requires
less than 4ω operations.

3. The intermediate values v0, v1, v3, v4 are re-
quired during reverse mode. I.e., the gra-
dient can be computed cheaply in terms of
arithmetic operations, but it is expensive in
terms of memory.

4

from numpy import s in , cos

x1 , x2 = 3 . , 7 .

Step 1 : eva lua t i on o f the func t i on
vm1 = x1 # independent
v0 = x2 # independent
−−
v1 = cos (v0) # i n s t r u c t i o n 1
v2 = v1 ∗ vm1 # in s t r u c t i o n 2
v3 = vm1 + v2 # in s t r u c t i o n 3
v4 = s i n (v3) # i n s t r u c t i o n 4
−−
y = v4 # dependent

Step 2 : r e v e r s e mode
v4bar , v3bar , v2bar , v1bar , v0bar , vm1bar=1 ,0 ,0 ,0 ,0 ,0

v3bar += v4bar∗ cos (v3) # i n s t r u c t i o n 4
vm1bar+=v3bar ; v2bar+=v3bar # i n s t r u c t i o n 3
v1bar+=v2bar∗vm1 ; vm1bar+=v2bar∗v1 # i n s t r u c t i o n 2
v0bar−=v1bar∗ s i n (v0) # i n s t r u c t i o n 1

print ' g rad i en t =' , [vm1bar , v0bar]

Listing 3: At �rst the function is evaluated by four oper-
ations, and then the gradient is evaluated in the reverse
mode.

It is also possible to compute higher-order
derivatives by combining UTP arithmetic and
the reverse mode of AD. The basic idea is
that one can evaluate the program from List-
ing 3 in UTP arithmetic. One can see in List-
ing 4 that the UTPM.pb_xyz functions mirror
the computation in the forward mode. The
xyz is a wildcard for sin, cos, add and mul.
These functions implement the relations de-
�ned by (6), i.e., compute x̄ given x, y and
ȳ. The function algopy.zeros((), dtype=y)

is a generalization of numpy.zeros and returns
a zero instance of the same type as y. I.e.,
new UTPM instances vibar.data.shape=(2,1)

(i=,1,2,3,4) are created. Evaluating # Step 1

yields the directional derivative ∇f(3, 7) · (1, 0)T

and # Step 2: reverse mode computes the gra-
dient ∇f(3, 7) and the Hessian×vector product
∇2f(3, 7) · (1, 0)T .

from algopy import UTPM, zeros , s in , cos

x1 = UTPM([[3 .] , [1 .]])
x2 = UTPM([[7 .] , [0 .]])

Step 1 : eva lua t i on o f the func t i on
vm1 = x1 # independent
v0 = x2 # independent
−−
v1 = cos (v0) # i n s t r u c t i o n 1
v2 = v1 ∗ vm1 # in s t r u c t i o n 2
v3 = vm1 + v2 # in s t r u c t i o n 3
v4 = s i n (v3) # i n s t r u c t i o n 4

−−
y = v4 # dependent

Step 2 : r e v e r s e mode
v4bar = ze ro s (() , dtype=y)
v3bar = ze ro s (() , dtype=y)
v2bar = ze ro s (() , dtype=y)
v1bar = ze ro s (() , dtype=y)
v0bar = ze ro s (() , dtype=y)
vm1bar = ze ro s (() , dtype=y)
v4bar . data [0 , 0] = 1 .
i n s t r u c t i o n s 4 ,3 ,2 and 1
UTPM. pb_sin (v4bar , v3 , v4 , (v3bar ,))
UTPM. pb_add(v3bar , vm1 , v2 , v3 , (vm1bar , v2bar))
UTPM. pb_mul(v2bar , v1 , vm1 , v2 , (v1bar , vm1bar))
UTPM. pb_cos (v1bar , v0 , v1 , (v0bar ,))

forward_dfdx1= y . data [1 , 0]
reverse_df = [vm1bar . data [0 , 0] , v0bar . data [0 , 0]]
hess_vec = [vm1bar . data [1 , 0] , v0bar . data [1 , 0]]

Listing 4: This Python code shows how the directional
derivative∇f(3, 7)·

(
1
0

)
, the gradient∇f(3, 7) and the Hes-

sian × vector product∇2f(3, 7)·
(
1
0

)
can be evaluated using

UTP arithmetic and the reverse mode.

2.5. Reverse Mode in AlgoPy

Since it is cumbersome to revert large com-
puter programs by hand, one typically auto-
mates this process as much as possible (hence the
name �automatic� di�erentiation). In AlgoPy one
records the sequence of instructions in a computa-
tional graph. This process is called tracing. When
the gradient (or the Hessian×vector product) is
requested, the graph is walked in reverse direction
and the same instructions as shown in Listing 4
are performed. The tracing is most conveniently
explained on the simple example shown in List-
ing 5: the variable of interest is wrapped in an
algopy.Function instance. All the standard op-
erators (±,×,÷) and functions (exp, sin, . . .) are
overloaded and build, as a side e�ect, the com-
putational graph shown in Figure 1. For further
information on implementation aspects we refer
to [8, 10].
from algopy import Function , CGraph , s in , cos

cg = CGraph ()
x1 = Function (3 .)
x2 = Function (7 .)
y = s i n (x1 + cos (x2) ∗ x1)
cg . t r a c e_o f f ()
cg . independentFunct ionList = [x1 , x2]
cg . dependentFunct ionList = [y]
cg . p l o t (' example_trace . svg ' , method=' neato ')

Listing 5: This example shows how the computation is
traced in AlgoPy and saved in a computational graph. The
graph is depicted in Figure (1).

5

2.6. Easy to use Drivers

Let f : RN → R and g : RN → RM be two
su�ciently smooth functions. Then the following
derivatives may be desired:

• gradient ∇f(x) ∈ RN

• Jacobian × vector ∂g
∂x

(x)v ∈ RM

• vector × Jacobian wT ∂g
∂x

(x) ∈ RN

• Hessian × vector ∂
∂x

(∂f
∂x

(x)v) ∈ RN

• vector×Hessian×vector ∂
∂x

(wT ∂g
∂x

(x)v)∈ RN

where v ∈ RN and w ∈ RM . Listing 6 demon-
strates how AlgoPy can be used to compute these
derivatives.

import algopy ; from algopy import UTPM
import numpy

def f (x) :
return x [0] ∗ x [1] ∗ x [2] + 7∗x [1]

def g (x) :
out = algopy . z e r o s (3 , dtype=x)
out [0] = 2∗x [0]∗∗2
out [1] = 7∗x [0] ∗ x [1]
out [2] = 23∗x [0] + x [2]
return out

x = numpy . array ([1 , 2 , 3] , dtype=f l o a t)
v = numpy . array ([1 , 1 , 1] , dtype=f l o a t)
w = numpy . array ([4 , 5 , 6] , dtype=f l o a t)

forward mode grad i en t
y=UTPM. extract_jacob ian (f (UTPM. in i t_ jacob ian (x)))
forward mode Jacobian
y=UTPM. extract_jacob ian (g (UTPM. in i t_ jacob ian (x)))
forward mode Jacobian−vec to r
y=UTPM. extract_jac_vec (g (UTPM. in it_jac_vec (x , v)))

t ra c e f
cg = algopy . CGraph ()
fx = algopy . Function (x)
fy = f (fx)
cg . t r a c e_o f f ()
cg . independentFunct ionList = [fx]
cg . dependentFunct ionList = [fy]

t ra c e g
cg2 = algopy . CGraph ()
fx = algopy . Function (x)
fy = g (fx)
cg2 . t r a c e_o f f ()
cg2 . independentFunct ionList = [fx]
cg2 . dependentFunct ionList = [fy]

r ev e r s e mode grad i en t
r e s u l t = cg . g rad i en t (x)
forward / r ev e r s e mode Hess ian
r e s u l t = cg . he s s i an (x)
forward / r ev e r s e mode Hessian−vec to r
r e s u l t = cg . hess_vec (x , v)

forward mode Jacobian−vec to r
r e s u l t = cg2 . jac_vec (x , v)
r ev e r s e mode vector−Jacobian
r e s u l t = cg2 . vec_jac (w, x)
r ev e r s e mode Jacobian
r e s u l t = cg2 . j acob ian (x)
forward / r ev e r s e mode vector−Hessian−vec to r
r e s u l t = cg2 . vec_hess_vec (w, x , v)

Listing 6: This listing shows how AlgoPy can be used to
compute derivatives of the functions f and g.

3. Numerical Linear Algebra Functions

Now that the basics have been explained, we
can discuss the more advanced features of Al-
goPy. Traditionally, AD tools support just the
scalar elementary functions. More elaborate op-
erations such as slicing and algorithms such as the
Cholesky and QR decomposition can, after all, be
represented as a sequence of scalar elementary in-
structions. In that view, any AD tool supports
NLA functions. However, there are a couple of
issues that complicate matters:

1. Existing reference algorithms often con-
tain non-di�erentiable statements. For in-
stance, many algorithms shown in [13] con-
tain checks whether some element is zero
(or nearly so) to avoid redundant computa-
tions. It is therefore no surprise that refer-
ence implementations such as LAPACK [2]
contain the same checks. Hence, to be on
the safe side, one would need to modify and
implement algorithms anew. This violates
the idea of code reuse.

2. Since many NLA functions have an O(N3)
complexity, the computational graph is of
the same order. In consequence memory of
order O(N3) is necessary. In practice one
therefore quickly runs out of available mem-
ory.

3. Operator overloading tools require an inter-
preter that operates on the computational
graph. This interpretation comes with an
overhead and it is therefore desirable to keep
the computational graph as small as possi-
ble.

4. Many Gaussian elimination type algorithms
use pivoting and it is therefore often manda-

6

tory to rebuild the computational graph
when input values change.

To circumvent such problems one can take a hi-

erarchical approach to AD as suggested for in-
stance by Bischof [6] or in [9]. I.e., one treats cer-
tain mathematical functions as atomic and derives
dedicated algorithms for UTP arithmetic and the
reverse mode. More to the point, let a su�ciently
smooth function F : RN → RM , x 7→ y = F (x)
be given. In the hierarchical approach one tries to
�nd an algorithm to evaluate [y]D = ED(F)([x]D)
as well as an algorithm to compute x̄, given ȳ
and x such that ȳT ẏ = ȳT ∂F

∂x
ẋ = x̄T ẋ holds. As

long as these relations are satis�ed, this approach
doesn't make any assumptions on the underlying
algorithm.

The arguments and function values of NLA
functions are matrices instead of column vec-
tors. The canonical inner product for matrices
A,B ∈ RM×N is

(A,B) = tr (ATB) =
N∑
n=1

M∑
m=1

AmnBmn .

Thus, for functions F : X 7→ Y , where X and Y
are some matrices, the relation (6) generalizes to

tr (Ȳ T Ẏ) = tr (X̄T Ẋ) . (7)

One can �nd a nice discussion of matrix derivative
results in the forward and reverse mode in [11, 12].

3.1. Illustrative Example 1

Consider the program from Listing 7. It shows
a contrived Python program where several fea-
tures of NumPy are used: the element-wise mul-
tiplication between two arrays A and b (which are
of di�erent shapes) requires broadcasting. In a
next step, a slice v1[:2,:2] is created, followed
by several operations to compute the determinant
of v3.

import numpy
def f (A, b) :

v1 = A∗b # broadcas t ing
v2 = v1 [: 2 , : 2] # s l i c i n g
v3 = numpy . dot (v2 .T, v2) # nla
v4 = numpy . l i n a l g . cho l e sky (v3) # nla
v5 = numpy . diag (v4)
v6 = numpy . prod (v5)
v7 = v6∗∗2

return v7

A = numpy . random . random ((3 , 3))
b = numpy . random . random (3)
y = f (A, b)

Listing 7: A NumPy based program using slicing, broad-
casting and NLA functions.

In Listing 8 one can see how AlgoPy can be
used to compute its gradient in the reverse mode.
The function evaluation gets traced and stored
in the object cg. The corresponding computa-
tional graph is depicted in Figure 2. Note that
there is no node for algopy.prod. Instead, the re-
quired operations to evaluate the product are rep-
resented as nodes. This is because there doesn't
exist a simple symbolic identity suitable for the
reverse mode. In fact, the product is one of the
motivating examples for AD and is also known as
Speelpenning's example [31].

import algopy
def f (A, b) :

v1 = A∗b # broadcas t ing
v2 = v1 [: 2 , : 2] # s l i c i n g
v3 = algopy . dot (v2 .T, v2) # nla
v4 = algopy . cho l e sky (v3) # nla
v5 = algopy . diag (v4)
v6 = algopy . prod (v5)
v7 = v6∗∗2
return v7

cg = algopy . CGraph ()
A = algopy . Function (numpy . random . random ((3 , 3)))
b = algopy . Function (numpy . random . random (3))
y = f (A, b)
cg . t r a c e_o f f ()
cg . independentFunct ionList = [A, b]
cg . dependentFunct ionList = [y]
cg . p l o t (' n la_funct ions . svg ' ,method=' dot ')

A = numpy . random . random ((3 , 3))
b = numpy . random . random (3)
r e s u l t = cg . g rad i en t ([A, b])

Listing 8: The function f(A,b) is traced and the resulting
computational graph is used to evaluate the gradient.

It is also possible to use UTP arithmetic to
compute the Jacobian of the function. This
is demonstrated in Listing 9. The func-
tion UTPM.init_jacobian takes care of initial-
izing Ab.data whereas UTPM.extract_jacobian

constructs the Jacobian from y.data. One
�nds that Ab.data.shape= (2, 12, 3, 4), i.e.,
UTPM.init_jacobian initializes a UTPM instance
with P = 12 directions and D = 2 coe�cients of
the shape (3, 4).

import algopy

7

0 Id

2 mul

1 Id

3 getitem

4 transpose

5 dot

6 cholesky

7 diag

8 getitem 11 getitem

10 mul

9 Id

13 mul

12 getitem

14 pow

Figure 2: The computational graph as generated by List-
ing 8.

def f (A, b) :
v1 = A∗b # broadcas t ing
v2 = v1 [: 2 , : 2] # s l i c i n g
v3 = algopy . dot (v2 .T, v2) # nla
v4 = algopy . cho l e sky (v3) # nla
v5 = algopy . diag (v4)
v6 = algopy . prod (v5)
v7 = v6∗∗2
return v7

Ab = numpy . random . random ((3 , 4))
Ab = algopy .UTPM. in i t_ jacob ian (Ab)
A = Ab [: , : 3] ; b = Ab [: , 3]
y = f (A, b)
r e s u l t = algopy .UTPM. extract_jacob ian (y)

Listing 9: UTP propagation.

3.2. Illustrative Example 2

Listing 10 shows a Python program where the
intermediate states of ten explicit time integra-
tion steps are stored in a two-dimensional ar-
ray. Subsequently, this array is used as input
for numerical linear algebra functions, including
the QR decomposition and the real symmetric
eigenvalue decomposition. The goal of the exam-
ple is to compute the �rst D = 30 Taylor co-
e�cients of the function f(x(t)), where x(t) =
(3, 2)T + (1, 2)T t ∈ R2 is implemented as eval_x
and f : R2 → R as eval_f. In Figure 3 one
can see the function values of f(x(t)) sampled at
points t ∈ [−1.5, 1.5] and polynomial approxima-
tions of varying orders. E.g., for the 4-th order

approximation only the �rst 5 coe�cients are used
in a call to numpy.polyval.
import algopy , numpy
from algopy import zeros , dot , qr , e igh
Nts = 10
def eval_f (x) :

tmp = ze ro s ((Nts , x . s i z e) , dtype=x)
tmp [0] = x
for nts in range (1 , Nts) :

x [0] −= 0.001∗x [0] ∗ x [1]
x [1] += 0.001∗x [0] ∗ x [1]
tmp [nts] = x

Q,R = qr (tmp)
l = e igh (dot (R.T,R)) [0]
return l [0] / l [1]

def eval_x (t) :
return numpy . array ([3 , 2])+ t ∗numpy . array ([1 , 2])

D,P = 30 ,1
t = algopy .UTPM(numpy . z e r o s ((D,P)))
t . data [1 , 0] = 1 .
x = eval_x (t)
y = eval_f (x)

Listing 10: Python code with a loop akin to an explicit
time integration and calls to numerical linear algebra func-
tions. The program is evaluated in univariate Taylor poly-
nomial arithmetic.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
t

−0.00010

−0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

f
(x

(t
))

function
1’th order approx.
4’th order approx.
9’th order approx.
29’th order approx.

Figure 3: Taylor series expansion of Listing 10.

3.3. Algorithms for Hierarchical AD

We now come to the discussion how hierarchi-
cal algorithms for Taylor polynomial arithmetic
and the reverse mode can be derived, i.e., without
augmenting existing algorithms. This idea is is by
no means new: First-order derivatives of a large
variety of NLA functions have been thoroughly
treated in the literature [23, 30, 17, 29]. How-
ever, these references do not put their results in
an algorithmic context and rather provide sym-
bolic identities. Giles collected existing results

8

and formulated them in a consistent way using
the standard AD notation [12]. Much less liter-
ature exists on Taylor polynomial arithmetic ap-
plied to NLA functions [35]. So far, apparently
only Phipps [27] has described univariate Taylor
polynomial (UTP) arithmetic applied to the NLA
functions dot, solve, inv in the combined for-
ward/reverse mode for use in a Taylor series inte-
grator for di�erential algebraic equations.

The matrix multiplication Z = XY , X ∈
RN×K , Y ∈ RK×M can be evaluated in UTP
arithmetic using the recurrence

D−1∑
d=0

Z[d]T
d =

D−1∑
d=0

d∑
k=0

X[d−k]Y[k] +O(TD) .

We de�ne
D
= to mean equality in the �rst D coef-

�cients to avoid the O(TD) terms. The pullback
has to satisfy

tr (Z̄T Ż) = tr (X̄T Ẋ) + tr (Ȳ T Ẏ)

and thus, according to the rules of matrix calcu-
lus, one obtains

X̄ = Z̄Y T and Ȳ = XT Z̄ . (8)

The transpose B = AT of a matrix A ∈ RM×N

corresponds to [B]D = [AT[0], . . . , A
T
[D−1]] and one

�nds for the reverse mode the relation

tr (B̄T Ḃ) = tr (B̄T ȦT) = tr (B̄Ȧ) .

The inverse [B]D of the matrix-valued UTP
[A]D =

∑D−1
d=0 A[d]T

D is de�ned by

1
D
= [A]D[B]D

D
=

D−1∑
d=0

d∑
k=0

A[d−k]B[k]T
d . (9)

Once B[0] = A−1
[0] is known, one can successively

compute the coe�cients B[d] (d = 1, 2, . . .), i.e.,
B[1] = −B[0]A[1]B[0] etc. To derive the pullback
formula it is necessary to �nd Ā given B̄, A,B
such that tr (B̄T Ḃ) = tr (ĀT Ȧ) holds. Di�erenti-
ation of the de�ning equation yields 0 = ȦB+AḂ
and hence, using the cyclic invariance of the
trace, one calculates tr (B̄T Ḃ) = tr (−B̄TBȦB) =
tr (−BB̄TBȦ) and thus

Ā = −BT B̄BT . (10)

As one can see, both [B]D and Ā can be eval-
uated by application of NLA functions. Anal-
ogously to the scalar elementary functions, the
pullback algorithm of Y = inv(X) is provided by
Xbar = UTPM.pb_inv(Ybar, X, Y, (Xbar,)).

3.4. Cholesky Decomposition

As another, more complicated example, we
consider the Cholesky decomposition of a sym-
metric matrix positive de�nite matrix A. It is
de�ned by

0 = G = A− LLT (11a)

0 = H = PR ◦ L , (11b)

where A,L ∈ RM×M . The element-wise prod-
uct PR ◦L selects all elements above the diagonal
of L and sets the other elements to zero. The
functional dependence of the de�ning equations
is denoted

L = cholesky(A) . (12)

To compute [L]D = ED(cholesky)([A]D) one
needs to solve

0 = [G]D
D
= [A]D − [L]D [L]TD (13a)

0 = [H]D
D
= PR ◦ [L]D . (13b)

Now assume that the coe�cient matrices of [L]D
for some D ≥ 1 were already obtained and com-
pute the next 1 ≤ E ≤ D coe�cients by per-
forming a �rst order Taylor expansion of the
system (13) for the extended Taylor polynomial
[L]D+E = [L]D + [∆L]ET

D. This is then solved
for the yet unknown [∆L]E. The resulting algo-
rithm for the special case E = 1 is shown in Al-
gorithm 1. PL ◦ B and PD ◦ B select the strictly
lower triangular and diagonal part of B by setting
all remaining elements of B to zero.

For the pullback we need to �nd Ā such that,
given L̄ and A = LLT , the equation tr (L̄T L̇) =
tr (ĀT Ȧ) is satis�ed. One obtains

Ā = L−T K̄ L−1 where (14)

K̄ = 1
2

(
(PL + PD) ◦ (LT L̄) + PR ◦ (L̄T L)

)
.

Other factorizations such as the QR and real
symmetric eigenvalue decomposition lead to sim-
ilar algorithms.

9

input : [A]D = [A[0], . . . , A[D−1]], where
A[d] ∈ RM×M symmetric
rank (A[0]) = M .

output: [L]D = [L[0], . . . , L[D−1]] lower
triangular, where L[d] ∈ RM×M

L[0] = cholesky(A[0]), H[0] = L −1
[0]

for d = 1 to D − 1 do

∆G = A[d] −
∑d−1

k=1 L[d−k] L
T
[k]

K = H[0] ∆GHT
[0]

L[d] = L[0]

(
PL ◦K + 1

2
PD ◦K

)
end

Algorithm 1: Algorithm to evaluate the
Cholesky decomposition in UTP arithmetic.

3.5. Comparison of Hierarchical and Scalar AD

We have argued in the introduction of this sec-
tion that the hierarchical approach can have dis-
tinct advantages over the scalar elementary AD.
In Listing 11 one can �nd a Python code for a
naïve implementation of the matrix multiplication
of two matrices X, Y ∈ RN×N . In a second step,
the trace of the resulting matrix is evaluated. The
corresponding computational graph (for N = 2)
is depicted in Figure 4.

Using the functions algopy.dot and
algopy.trace would result in a computa-
tional graph with only four nodes: two �Id�
nodes, one �dot� node and one �trace� node.
Hence, instead of a graph of size O(N3) one
obtains a graph with just O(1) nodes. Working
with large graphs is relatively slow in AlgoPy
since the implementation of the reverse mode
uses a simple Python for loop. For N � 100
the graph would also require a lot of memory. It
is also much faster to use algopy.dot since it
internally calls numpy.dot.

The pullback (8) of the matrix multiplication
Z = XY , X, Y ∈ RN×N requires only the inputs
X and Y . I.e., to apply the reverse mode only
memory of order O(N2) instead of O(N3) is nec-
essary.

On the other hand, in Figure 4 one can see
that there are several redundant computations

(e.g., node �22 add�). I.e., one could optimize this
graph. That means there is a trade-o� between
both approaches.

import numpy , algopy
def dot (x , y) :

N,K = x . shape
K,M = y . shape
z = numpy . z e r o s ((N,M) , dtype=algopy .UTPM)
for n in range (N) :

for m in range (M) :
for k in range (K) :

z [n ,m] += x [n , k]∗ y [k ,m]
return z

def eval_f (x , y) :
return numpy . t r a c e (dot (x , y))

N = 2
cg = algopy . CGraph ()
x = [algopy . Function (1 .) for n in range (N∗∗2)]
x = numpy . array (x) . reshape ((N,N))
y = [algopy . Function (2 .) for n in range (N∗∗2)]
y = numpy . array (y) . reshape ((N,N))
z = eval_f (x , y)
cg . t r a c e_o f f ()
cg . independentFunct ionList = l i s t (x . r av e l ())+\

l i s t (y . r av e l ())
cg . dependentFunct ionList = [z]
cg . p l o t (' do t_t rad i t i ona l . svg ')

Listing 11: Naive Python implementation of the matrix
product. All operations to compute tr (XY) are traced
and stored in the CGraph instance cg.

4. Comparison to Other Tools

There are several other Python tools that
can be used to evaluate derivatives in Python.
To allow a potential user to decide whether
AlgoPy is suitable for the task at hand, we
show here a rudimentary runtime analysis on two
benchmark problems. The authors are aware
of the following tools in Python: pycppad [4],
PyAdolc [37], uncertainties [22], numdi�tools [7],
funcdesigner [21], Scienti�cPython [18], upy [1],
Theano [5] and SymPy [32]. We decided to re-
strict the comparison to AlgoPy, numdi�tools,
PyAdolc and Theano. The reasoning is as follows:
we wanted to include at least one tool that uses
�nite di�erences (numdi�tools), one existing AD
tool that is very popular (PyAdolc resp. ADOL-
C) and one tool that uses symbolic di�erentiation
in combination with code generation techniques
(Theano).

All the tests were performed on a machine
with an Intel(R) Core(TM)2 Duo CPU T7300

10

0 Id

8 mul 13 mul1 Id

11 mul 16 mul

2 Id

18 mul 23 mul3 Id

21 mul 26 mul

4 Id 5 Id

6 Id 7 Id

10 add

9 Id

12 add

28 add

15 add

14 Id

17 add

20 add

19 Id

22 add

25 add

24 Id

27 add

Figure 4: The computational graph of the matrix product followed by taking the trace of the result.

@2.00GHz and 2048624 kB of RAM. The operat-
ing system is Linux version 2.6.32-26-generic with
standard compiler gcc version 4.4.3. The ver-
sions are as follows: AlgoPy 0.3.1, Theano (2010-
12-16), Numdi�tools 0.3.1, PyAdolc (2010-12-16),
Python 2.6.5, NumPy 1.3.0 and SciPy 0.7.0.

4.1. Example 1: Minimal Surface Problem

It is advantageous to use the reverse mode of
AD to compute the gradient of functions with
many inputs. Consider the cost function

u 7→
∫ 1

0

∫ 1

0

√
1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dxdy

for u ∈ C1([0, 1]2). Discretizing the function u
and the partial derivatives on a grid by using �nite
di�erences yields

RM×M 3 u 7→ Õ(u) = 1 +
M−2∑
i=0

M−2∑
j=0

Oij(u) ,

where the components are computed by

Õij(u) =
(ui+1,j+1 − ui,j)2 + (ui,j+1 − ui+1,j)

2

4
.

Let the cost function be used as objective function
of the constrained optimization problem

min
u∈RM×M

Õ(u) ,

with prescribed values on the boundary and ad-
ditional box constraints inside the square:

u(x, 0) = 0, u(0, y) = sin(π
2
y),

u(x, 1) = exp(π
2
x), u(1, y) = exp(π

2
) sin(π

2
y);

u(x, y) ≥ 5
2

for (x, y) ∈ B((1
2
, 1

2
), 1

4
) .

The optimization with a gradient-based op-
timizer requires at least the gradient ∇Õ(u) ∈
RM×M . Listing 12 shows a typical implementa-
tion of the cost function.

from numpy import random
def O_tilde (u) :

return numpy . sum (((u [1 : , 1 :] − u [0 :−1 ,0 :−1])∗∗2
+ (u [1 : ,0 :−1]−u [0:−1 , 1 :]) ∗ ∗ 2)) / 4 + 1

Listing 12: Python code to evaluate the gradient and
Hessian-vector product on the minimal surface problem.

Figure 5: Solution of the minimal surface optimization
problem with cylindrical box constraints for M = 50.

As a �rst benchmark we compute the gradient
and Hessian-vector product of the minimal sur-
face cost function. Of highest importance is that
the computations be correct. And indeed one can
observe in Figure 6 that AlgoPy, PyAdolc and
Theano di�er only at a level close to the machine
precision ≈ 10−16. Figure 7 shows the time for the
preprocessing (construction of the computational
graph, graph optimization, code generation, etc.)
and the time of the function evaluation. Figure 8
shows that numdi�tools and the forward mode of
AlgoPy require more and more time to compute

11

the derivatives when M is increased whereas Al-
goPy (reverse mode), Theano and PyAdolc com-
pute the gradient in a time which is within a con-
stant multiple of the time to compute the function
itself. The observed factor for AlgoPy is not quite
the theoretical ω ∈ [3, 4] but between 30 and 40.

100 101 102 103

M

10−17

10−16

10−15

10−14

10−13

10−12

re
la

ti
ve

er
ro

r
to

A
lg

oP
y

So
lu

ti
on

error gradient and Hessian-vector

grad pyadolc
grad Theano
grad AlgoPy (forward)
grad numdifftools
Hv pyadolc
Hv Theano

Figure 6: The plots show the relative error
‖fref−f‖
‖fref‖ be-

tween the gradient resp. Hessian×vector (Hv) product
computed by AlgoPy and the other tools of the minimal
surface problem.

100 101 102 103

M

10−1

100

101

102

103

104

105

ru
nt

im
e

ra
ti

o

runtime preprocessing and function evaluation

preproc AlgoPy
preproc pyadolc
preproc Theano
function AlgoPy
function pyadolc
function Theano

Figure 7: Time for the preprocessing and the function
evaluation relative to the time of the Python function eval-
uation (minimal surface problem).

4.2. Example 2: ODE Fitting

As an example where directional derivatives
are required, consider the parameter dependent
di�erential equation

ẏ(t) = F (y(t), p) , (15)

100 101 102 103

M

100

101

102

103

104

105

ru
nt

im
e

ra
ti

o

runtime gradient and Hessian-vector evaluation

grad AlgoPy
grad pyadolc
grad Theano
grad AlgoPy (forward)
grad numdifftools
Hv AlgoPy
Hv pyadolc
Hv Theano

Figure 8: The plot shows the time required to compute
the gradient and Hessian-vector on the minimal surface
problem relative to the Python function evaluation.

with y : [0, tf]→ Rn a di�erentiable function and
p ∈ Rd the parameter vector. Now suppose that
a number of position measurements (tk, yk) of the
development of a physical system are given. The
task is to �nd a trajectory of the ODE that is
close to the measurements by tuning the parame-
ter vector p (and the initial point y0 = y(0)). We
pose this as a least squares problem, among all
trajectories y(t; y0, p) �nd one that minimizes

I(y0, p) =
N∑
k=1

‖y(tk; y0, p)− yk‖2
2 .

Using a Gauss-Newton approach to this problem
one needs to compute the Jacobian of the residual
vector

G(y0, p) = (y(tk; y0, p)− yk)Nk=1 .

The case where d is much smaller than N this is
most expediently done using the forward mode of
automatic di�erentiation. As example ODE we
use the van-der-Pol oscillator

0 =ẍ(t)− p (1− x(t)2) ẋ(t) + x(t),

x(0) =3, ẋ(0) = 2

where the parameter p is to be estimated from
noisy measurements of the original trajectory
with the �true� value p = 2.3.

import algopy ; import numpy

12

def eval_f (p , x) :
""" computes ODE so l u t i o n given i n i t i a l
c ond i t i on s x and the parameter p"""
tmp = algopy . z e r o s (Nts , dtype=p)
y = algopy . z e r o s (x . shape , dtype=p)
tmp [0] = y [0] = x [0]
for nts in range (1 , Nts) :

y [0] += 0.01∗y [1]
y [1] += 0.01∗p [0]∗(1−y [0] ∗ ∗ 2) ∗ y [1] − y [0]
tmp [nts] = y [0]

return tmp

def eval_jac_f (p , x , meas) :
p = algopy .UTPM. in i t_ jacob ian (p)
y = eval_f (p , x)
return algopy .UTPM. extract_jacob ian (y)

Nts = 60 ; x0 = numpy . array ([3 . , 2 .])
p1 = numpy . array ([2 . 3])
y1 = eval_f (p1 , x0)

Listing 13: Python code with an explicit integration of the
ODE and computation of the derivative of the trajectory
x wrt. the parameter p

0.0 0.1 0.2 0.3 0.4 0.5 0.6
time t

−3

−2

−1

0

1

2

3

4

tr
aj

ec
to

ry

x(t; 2.30)

x(t; 0.30)

x(t; 2.23)
∂x
∂p(t; 2.23)

Figure 9: Trajectories and sample points for the least
squares �t.

In Figure 9, one can see the original trajec-
tory (p = 2.3) and simulated measurements where
the outcomes of normal, independent and identi-
cally distributed random variables are added to
the original trajectory. The resulting values are
plotted as points with error bars denoting the
standard deviation. The best least-squares �t was
found for parameter p = 2.37. The trajectory
for p = 0.3 is the initial value used for the least
squares �t. Lastly, the sensitivity of the solution
to changes in the parameter is plotted.

For the second benchmark problem we use
the ODE �tting problem with a slightly modi-
�ed code as shown in Listing 14. In Figure 10
one can observe that many function evaluations

have to be performed in order to amortize the
time for the preprocessing. AlgoPy doesn't re-
quire a preprocessing and is therefore not shown
in the graph. The runtimes to evaluate the Ja-
cobian are depicted in Figure 11. Numdi�tools
computed the Jacobian correctly within sensible
errors but raised an exception for Nts ≥ 40. In
the current version of Theano there is no possi-
bility to compute directional derivatives and thus
the runtime increases approximately linearly with
Nts. AlgoPy requires about 20 to 30 times more
time to compute the Jacobian than to compute
the function.

Nts = 10
def eval_f (x) :

tmp = numpy . z e r o s ((Nts , x . s i z e) , dtype=f l o a t)
r = numpy . array ([−1 . , 1])
tmp [0] = x
for nts in range (1 , Nts) :

x += r ∗0.001∗x [0] ∗ x [1]
tmp [nts] = x

return tmp

Listing 14: Python code of an explicit time-step algorithm.

100 101 102 103

Nts

10−2

10−1

100

101

102

103

104

105

ru
nt

im
e

ra
ti

o

runtime preprocessing and function evaluation

preproc pyadolc
preproc Theano
function pyadolc
function Theano

Figure 10: Time for preprocessing and for the function
evaluation relative to the runtime of the normal function
evaluation (ODE �t problem).

5. Conclusions and Outlook

We have discussed how the well-known AD
techniques (UTP arithmetic, reverse mode) are
implemented in AlgoPy and have illustrated how
these AD techniques generalize to hierarchical AD
by application of matrix calculus rules. The dif-
ferences between scalar AD and hierarchical AD

13

100 101 102 103

Nts

10−2

10−1

100

101

102

103

104

105

ru
nt

im
e

ra
ti

o

runtime for Jacobian evaluation

AlgoPy
pyadolc
Theano
numdifftools

Figure 11: Time for the Jacobian evaluation relative to
the runtime of the normal function evaluation (ODE �t
problem).

have been highlighted and it has been demon-
strated, at the example of the Cholesky decompo-
sition, that it is possible to apply matrix calculus
also to matrix factorizations.

The runtime comparison reveals that the
current implementation of AlgoPy su�ers
speed-wise from a relatively large overhead. A
reduction of this overhead could be a next step,
possibly by code generation techniques similar to
Theano.

It would also be a good idea to make all al-
gorithms truly generic. Then one could trace
the derivative evaluation. With such a feature
it would be easy to compute nested derivatives of
the form ∇g(∇f(x)).

Many functions in large-scale optimization
have sparse derivatives. One could add support
for sparse derivatives, e.g., by propagation of spar-
sity patterns and the use graph coloring methods.

Acknowledgements

The authors wish to thank Gaël Varoquaux,
Hans Petter Langtangen, Christophe Pradal and
Andreas Griewank for advice on how to improve
the readability of this work.

The plots were generated with Matplotlib [19]
and Mayavi [28].

This research was partially supported by the
Bundesministerium für Bildung und Forschung
(BMBF) within the project NOVOEXP (Nu-

merische Optimierungsverfahren für die Param-
eterschätzung und den Entwurf optimaler Ex-
perimente unter Berücksichtigung von Unsicher-
heiten für die Modellvalidierung verfahrenstech-
nischer Prozesse der Chemie und Biotechnologie)
(03GRPAL3), Humboldt Universität zu Berlin.

[1] Romstedt, Friedrich. Python module: upy. http:

//github.com/friedrichromstedt/upy, 2010.
[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-

mel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users' Guide. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, third edition,
1999.

[3] Michael Bartholomew-Biggs, Steven Brown, Bruse
Christianson, and Laurence Dixon. Automatic dif-
ferentiation of algorithms. J. Comput. Appl. Math.,
124(1-2):171�190, 2000.

[4] Bradley M. Bell and Sebastian F. Walter. PyCppAD,
Python bindings to CppAD. https://github.com/

b45ch1/pycppad, 2009�.
[5] James Bergstra, Olivier Breuleux, Frédéric Bastien,

Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, and Yoshua Bengio. Theano:
a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scienti�c Computing Con-
ference (SciPy), June 2010. Oral.

[6] Christian H. Bischof and Mohammad R. Haghighat.
Hierarchical approaches to automatic di�erentiation.
In Martin Berz, Christian Bischof, George Corliss,
and Andreas Griewank, editors, Computational Dif-
ferentiation: Techniques, Applications, and Tools,
pages 83�94. SIAM, Philadelphia, PA, 1996.

[7] Per Andreas Brodtkorb. Numdi�tools. http://

code.google.com/p/numdifftools/, 2009.
[8] Bruce Christianson. Reverse accumulation of func-

tions containing gradients. Tech. Report 278, Nu-
merical Optimisation Centre, School of Information
Sciences, University of Hertfordshire, Hat�eld, UK,
1993.

[9] D.B. Christianson, A.J. Davies, L.C.W. Dixon,
R. Roy, and P. Van der Zee. Giving reverse di�er-
entiation a helping hand. Optimization Methods and
Software, 8:53�67, 1997.

[10] Gay, David M. . Automatic di�erentiation of non-
linear AMPL models. In Andreas Griewank and
George F. Corliss, editors, Automatic Di�erentiation
of Algorithms: Theory, Implementation, and Appli-
cation, pages 61�73. SIAM, Philadelphia, PA, 1991.

[11] Mike B. Giles. An extended collection of matrix
derivative results for forward and reverse mode au-
tomatic di�erentiation. Technical report, Oxford
University Computing Laboratory, 2007. Report no
08/01.

[12] Mike B. Giles. Collected matrix derivative results

14

http://github.com/friedrichromstedt/upy
http://github.com/friedrichromstedt/upy
https://github.com/b45ch1/pycppad
https://github.com/b45ch1/pycppad
http://code.google.com/p/numdifftools/
http://code.google.com/p/numdifftools/

for forward and reverse mode algorithmic di�erenti-
ation. In Christian H. Bischof, H. Martin Bücker,
Paul D. Hovland, Uwe Naumann, and J. Utke, ed-
itors, Advances in Automatic Di�erentiation, pages
35�44. Springer, 2008.

[13] Gene H. Golub and Charles F. Van Loan.Matrix com-
putations (3rd ed.). Johns Hopkins University Press,
Baltimore, MD, USA, 1996.

[14] Andreas Griewank. A mathematical view of auto-
matic di�erentiation. In Acta Numerica, volume 12,
pages 321�398. Cambridge University Press, 2003.

[15] Andreas Griewank, David Juedes, and Jean Utke. Al-
gorithm 755: ADOL-C: A package for the automatic
di�erentiation of algorithms written in C/C++. ACM
Trans. Math. Softw., 22(2):131�167, 1996.

[16] Andreas Griewank and Andrea Walther. Evaluating
Derivatives: Principles and Techniques of Algorith-
mic Di�erentiation. Number 105 in Other Titles in
Applied Mathematics. SIAM, Philadelphia, PA, 2nd
edition, 2008.

[17] M. J. R. Healy. Matrices for Statistics. Clarendon
Press, Oxford, 2nd edition, 2000.

[18] Konrad Hinsen. Scienti�cPython. http:

//dirac.cnrs-orleans.fr/plone/software/

scientificpython/.
[19] John D. Hunter. Matplotlib: A 2d graphics environ-

ment. Computing In Science & Engineering, 9(3):90�
95, May-Jun 2007.

[20] Eric Jones, Travis Oliphant, Pearu Peterson, et al.
SciPy: Open source scienti�c tools for Python. http:
//www.scipy.org, 2001�.

[21] Dmitrey L. Kroshko. Funcdesigner. http://

openopt.org/FuncDesigner, 2010.
[22] Eric O. Lebigot. Uncertainties. http://pypi.

python.org/pypi/uncertainties, 2010.
[23] Jan R. Magnus and Heinz Neudecker. Matrix dif-

ferential calculus with applications in statistics and
econometrics. John Wiley & Sons, 2nd edition, 1999.

[24] Richard D. Neidinger. Directions for computing trun-
cated multivariate Taylor series. Mathematics of
Computation, 74(249):321�340, 2005.

[25] Richard D. Neidinger. Introduction to Automatic
Di�erentiation and MATLAB Object-Oriented Pro-
gramming. SIAM Review, 52(3):545�563, 2010.

[26] Travis E. Oliphant. Guide to NumPy. Trelgol Pub-
lishing, USA, 2006.

[27] Eric Todd Phipps. Taylor Series Integration of
Di�erential-Algebraic Equations: Automatic Dif-
ferentation as a Tool For Simulationg Rigid Body
Mechanical Systems. PhD thesis, Cornell University,
February 2003.

[28] P. Ramachandran and G. Varoquaux. Mayavi: 3D
Visualization of Scienti�c Data. Computing in Sci-
ence & Engineering, 13(2):40�51, 2011.

[29] James R. Schott, editor. Matrix Analysis for Statis-
tics. Wiley, New York, 1997.

[30] George A. F. Seber. A Matrix Handbook for Statisti-
cians. Wiley-Interscience, New York, NY, USA, 2007.

[31] Bert Speelpenning. Compiling fast partial derivatives
of functions given by algorithms. PhD thesis, Cham-
paign, IL, USA, 1980. AAI8017989.

[32] SymPy Development Team. Sympy: Python library
for symbolic mathematics. http://www.sympy.org,
2009.

[33] Gaël Varoquaux, Stéfan van der Walt, and K. Jarrod
Millman, editors. Proceedings of the 8th Python in
Science Conference, 8 2009.

[34] Gaël Varoquaux, Travis Vaught, and Jarrod Millman,
editors. Proceedings of the 7th Python in Science Con-
ference, 8 2008.

[35] William J. Vetter. Matrix calculus operations and
Taylor expansions. SIAM Review, 15(2):352�369,
1973.

[36] Sebastian F. Walter. ALGOPY: algorithmic di�eren-
tiation in Python. http://pypi.python.org/pypi/
algopy, 2009�.

[37] Sebastian F. Walter. Pyadolc, Python bindings to
ADOL-C. https://github.com/b45ch1/pyadolc,
2009�.

15

http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://www.scipy.org
http://www.scipy.org
http://openopt.org/FuncDesigner
http://openopt.org/FuncDesigner
http://pypi.python.org/pypi/uncertainties
http://pypi.python.org/pypi/uncertainties
http://www.sympy.org
http://pypi.python.org/pypi/algopy
http://pypi.python.org/pypi/algopy
https://github.com/b45ch1/pyadolc

	Introduction
	Relating Theory and Implementation
	Computational Model
	Forward Mode
	Forward Mode in AlgoPy
	Reverse Mode
	Reverse Mode in AlgoPy
	Easy to use Drivers

	Numerical Linear Algebra Functions
	Illustrative Example 1
	Illustrative Example 2
	Algorithms for Hierarchical AD
	Cholesky Decomposition
	Comparison of Hierarchical and Scalar AD

	Comparison to Other Tools
	Example 1: Minimal Surface Problem
	Example 2: ODE Fitting

	Conclusions and Outlook
	Appendices
	Bibliography

