
Jobe: REST API
Version 1.0 17 March 2015

Richard Lobb

1. Introduction
This document proposes a RESTful API for sending small student-exercise-type jobs to a “Job Engine”
server, called Jobe. A job consists of a source program in a specified language together with possible
additional files to be placed in the same directory as the source program. Jobe compiles and/or executes the
given job and returns the status of the job plus any output generated. This API is similar in general intent to
that of the Ideone API: see https://ideone.com/files/ideone-api.pdf. The major difference is that it is REST
based rather than SOAP based. Also, it supports the uploading of additional support files, which may be
either extra code, such as classes or modules, or may be run-time test data.

Jobe has been developed for use in the Moodle CodeRunner question-type plug-in (see
https://github.com/trampgeek/CodeRunner). In this context, the Jobe server is expected to be a custom server
behind the Moodle institutional firewall and Jobe will receive requests only from the Moodle server by
means of firewalling of the server or other IP whitelisting mechanisms. In more general contexts,
authentication and/or authorization can be enforced by higher-level protocols that are not part of this API
specification. For example, the current implementation of Jobe uses Ellis Lab's CodeIgniter framework (see
http://codeigniter.com) plus the REST-server extension written by Phil Sturgeon (see
https://github.com/philsturgeon/codeigniter-restserver). The latter provides for Basic or Digest HTTP
authentication, IP whitelisting and an API-key mechanism that requires all HTTP requests to include an X-
API-KEY header and a known authorisation key. A Jobe administrator can enforce any combination of these
mechanisms on top of the API described in this document.

2. Requests
The following table lists all the REST requests. The meanings of the possible response codes are documented
in section 3. All POST and PUT requests have a content type of application/json; the request body is a json
encoded object in which the fields are the parameters specified in the table.

Request Name HTTP
Type

Target
Resource

Parameters
(* denotes
required)

Possible response
codes

Comment

submit_run POST /runs run_spec* 200 OK
202 Accepted
400 BadRequest
404 Not Found

A return code of 200 is
accompanied by the run
result; 202 denotes the job
has been queued for later
execution (notes 1, 2, 6).

get_run_status GET /runresults/id 200 OK
204 NoContent
400 BadRequest
404 NotFound

A return code of 200 is
accompanied by the run
result; 204 denotes the job
is still pending (notes 2, 6).

get_languages GET /languages 200 OK
400 BadRequest

Returns a JSON encoded
list of supported languages
(note 3).

put_file PUT /files/uniqueid file_contents* 204 No content
400 BadRequest
403 Forbidden

It is the client's
responsibility to ensure a
unique file ID (notes 4, 6,
7, 8)

- 1 -

Requests (cont'd)

Request Name HTTP
Type

Target Resource Parameters
(* denotes required)

Possible response
codes

Comment

post_file POST /files file_contents* 200 OK
400 BadRequest

Add a file to the
collection and get
back a unique
file identifier
(notes 4, 6, 7)

check_file HEAD /files/uniqueid 204 No content
400 BadRequest
404 NotFound

Used by the
client to see if the
server (still)
holds a particular
file (notes 6, 8).

Notes:

1. The mandatory run_spec parameter is a JSON-encoded job record with the following allowed fields
(* denotes a mandatory field/key).

• language_id* - the computer language ID of this particular run (see note 3)
• sourcecode* - the program to compile and/or run
• sourcefilename - the name to assign to the source code file in the run directory. If omitted,

Jobe either uses a generic language-specific filename like prog.cpp or prog.py, or, where it
matters (e.g. Java) a name is inferred from the source code. The latter process is not
completely reliable (it uses regular expression matching rather than a full parse) so for such
languages an explicit sourcefilename is strongly recommended.

• input - the standard input data, if required
• file_list - a list of (file_id, file_name) pairs, specifying which files should be loaded into the

run-time directory. The file_id is the unique file identifier as supplied in put_file and
file_name is the name assigned to that file when it is loaded. [As a possible extension, a
triple of (file_id, file_name, is_source) might be permitted instead of a pair; the third
parameter is true if the specified file is a program source file that should be included in the
compile-and-build operation in a language-dependent manner.] File identifiers are required
to be purely alphanumeric and at least 8 characters in length. Filenames must be made only
from alphanumeric characters plus '-', '_' and '.'

• parameters - a server-dependent set of (key, value) pairs (i.e. a JSON record), which might
include things like maximum execution time, maximum memory usage, compile flags, ...

• debug - if provided and true, the server is invited to include extra debugging information in
the response or to retain extra information itself for later inspection. Server dependent.

2. The API allows for either an immediate run of a submitted job, returning the run results in the
response or a deferred run in which the server simply accepts the job and enqueues it for later
execution. The server has discretion over which of these modes to use and the client must respect
that choice, polling for a result if the run submission returns 202 Accepted rather than 200 OK. The
former mode is preferred for fast turn-around jobs on relatively lightly-loaded servers while the latter
would be required under high load. The server may choose to use a mix of the two depending on
load and/or expected maximum execution time.

3. The returned language list is a JSON-encoded list of (language_id, language_version) pairs of all
supported languages. The client must use one of the returned language_ids in all its run submissions.
The formats of the language_id and language_version are server-dependent: they are just strings.
However, they should preferably be human-readable, e.g. ('C99', 'gcc 4.8.1'), to allow clients to
present the language list to on-line users. The language_id must be unique; if multiple versions of a
language are supported, each must have its own ID.

4. The use of PUT to place a specific file on the server is not satisfactory in a shared-server context

- 2 -

where the clients might not be trusted to provide a globally unique file id. If a server does not trust
the sender it should return 403 Forbidden and the client must then fall back to using post-file instead.

5. Ideally, if the get_status request is to be idempotent, the server should keep run results for some
“reasonable” time. However, the holding time from when the results are first returned to the client to
when they are discarded from the server is at the discretion of the server, and may be zero.

6. The file interface supports server caching of support files, which might be large test data files that
one does not wish to upload multiple times. The recommended approach is that used by the
CodeRunner client: attempt a submit_run without uploading any files and if the response is 404 Not
Found, upload all the files using put_file and try the run again. Alternatively if it is unlikely that the
files have been uploaded already, they can be uploaded before the run.

7. The file_contents parameter to put_file and post_file requests is a string containing the file contents
(which might be binary) encoded in standard base_64. The server decodes the file_contents before
writing it to the file cache. If the contents are not a valid base-64 encoding, 400 Bad Request is
returned.

8. The file cache is, as the name implies, simply a cache rather than a permanent file store. Persistance
of a file beyond a few hours is not guaranteed. It is thus unsafe to use a check_file request to confirm
the existence of a requred file prior to the run that requires it. The file might be deleted from the
cache between the two calls. See note 6 for the recommended approach.

3. Meanings of the different response codes
This section describes the meanings of the various possible HTTP response codes returned by the requests
listed in section 2. 405 MethodNotAllowed is the only response code not explicitly listed in section 2,
because it is the one issued when a request does not match any of the specified requests.

1. 200 OK is returned by a successful request that is accompanied by some response data. Not all
successful requests return 200 OK, as follows. submit_run returns 200 together with the full run
result as in section 4 below if the run can be done immediately, but returns 202 Accepted together
with a run_id if the run if queued for later exection. get_run_status returns 200 OK plus the run
result if the job is complete but returns 204 No Content if the job is still queued. put_file returns 204
No Content if the creation or update of the specified file is successful.

2. 202 Accepted is returned by the submit_run request if the server has enqueued the job for subsequent
execution rather than running it immediately. The response data is then a unique run_id for use in
subsequent get_run_status requests.

3. 204 NoContent is returned by the get_run_status request if the request relates to a pending job for
which the result is not yet available. It's also returned by check_file if the file exists and by a
successful put_file .

4. 400 BadRequest is returned by any request that has syntactic or semantic errors in any of the
parameters or is missing a required parameter.

5. 403 Forbidden is returned by put-file if the server does not trust the client to provide a unique file ID,
in which the client must use the post-file command instead, where the server provides file IDs.

6. 404 NotFound is returned by any request to a resource collection other than those listed or by a
request for a specific unknown resource or by a submit_run request containing unknown file ids.

7. 405 Method Not Allowed is returned by any request to a resource or resource collection that uses a
method that is not defined for that re RunResult source (collection).

8. Other return codes, such as 401 Unauthorized, by also be returned if higher-level authentication and
authorisation protocols are enabled, as briefly discussed in the introduction.

4. The RunResult object
The data returned with a 200 OK response to either a submit_run or get_run_status request is a JSON-

- 3 -

encoded record with four fields, as follows:

1. run_id - the unique ID of this particular run (which may or may not be usable in a subsequent
get_job_status request; see part 1 note 5).

2. outcome - the outcome of the job, as follows:

Value Meaning

11 Compilation error. The cmpinfo field should offer further explanation

12 Runtime error. The job compiled but threw an exception at run time that isn't covered by
any of the more-specific errors below.

13 Time limit exceeded. The job was killed before it ran to completion as a result of the
server-specified time limit (or a possible time limit specified via the parameters field of
the job request) being reached.

15 OK. The run ran to completion without any exceptions.

17 Memory limit exceeded. The job was killed before it ran to completion as a result of the
server-specified maximum memory limit (or a possible memory limit specified via the
parameters field of the job request) being reached.

19 Illegal system call. The task attempted a system call not allowed by this particular server.

20 Internal error. Something went wrong in the server. Please report this to an administrator.

21 Server overload. No free Jobe user accounts. Probably something has gone wrong.

The precise situations under which these outcome values are returned will be server dependent. For
example, a server might might limit the memory by denying memory allocation requests without
terminating the job: the job would then possibly generate its own error message and exit without
throwing an exception. Similarly, a server might not recognise an illegal system call as such but just
lock the job in a chroot jail so that potentially dangerous system calls are unable to do any damage.

3. cmpinfo - any output generated by the compiler (if there is one) at compile time.

4. stdout - the standard output from the program run

5. stderr - the standard error output from the program run

- 4 -

